Solveeit Logo

Question

Question: Let $a = (\sin\theta)^{\sin\theta}$, $b = (\sin\theta)^{\cos\theta}$, $c = (\cos\theta)^{\sin\theta}...

Let a=(sinθ)sinθa = (\sin\theta)^{\sin\theta}, b=(sinθ)cosθb = (\sin\theta)^{\cos\theta}, c=(cosθ)sinθc = (\cos\theta)^{\sin\theta}, d=(cosθ)cosθd = (\cos\theta)^{\cos\theta}, then

A

b<cb < c for θ(0,π4)\theta \in (0, \frac{\pi}{4})

B

b>cb > c for θ(π4,π2)\theta \in (\frac{\pi}{4}, \frac{\pi}{2})

C

a<da < d for θ(0,π4)\theta \in (0, \frac{\pi}{4})

D

ab>cdab > cd for θ(π4,π2)\theta \in (\frac{\pi}{4}, \frac{\pi}{2})

Answer

(A), (B), (C), (D)

Explanation

Solution

Let x=sinθx = \sin\theta and y=cosθy = \cos\theta. For θ(0,π/2)\theta \in (0, \pi/2), x,y(0,1)x, y \in (0, 1). The given expressions are a=xxa = x^x, b=xyb = x^y, c=yxc = y^x, d=yyd = y^y.

  1. Compare bb and cc: We compare xyx^y and yxy^x. Consider the function f(t)=lnttf(t) = \frac{\ln t}{t}. Its derivative f(t)=1lntt2f'(t) = \frac{1 - \ln t}{t^2} is positive for t(0,1)t \in (0, 1) since lnt<0\ln t < 0. Thus, f(t)f(t) is an increasing function on (0,1)(0, 1).

    • For θ(0,π/4)\theta \in (0, \pi/4), 0<sinθ<cosθ<10 < \sin\theta < \cos\theta < 1, so 0<x<y<10 < x < y < 1. Since f(t)f(t) is increasing, f(x)<f(y)    lnxx<lnyy    ylnx<xlny    ln(xy)<ln(yx)f(x) < f(y) \implies \frac{\ln x}{x} < \frac{\ln y}{y} \implies y \ln x < x \ln y \implies \ln(x^y) < \ln(y^x). Since ln\ln is increasing, xy<yx    b<cx^y < y^x \implies b < c. So, option (A) is correct.
    • For θ(π/4,π/2)\theta \in (\pi/4, \pi/2), 0<cosθ<sinθ<10 < \cos\theta < \sin\theta < 1, so 0<y<x<10 < y < x < 1. Since f(t)f(t) is increasing, f(y)<f(x)    lnyy<lnxx    xlny<ylnx    ln(yx)<ln(xy)f(y) < f(x) \implies \frac{\ln y}{y} < \frac{\ln x}{x} \implies x \ln y < y \ln x \implies \ln(y^x) < \ln(x^y). Since ln\ln is increasing, yx<xy    c<by^x < x^y \implies c < b. So, option (B) is correct.
  2. Compare aa and dd: We compare xxx^x and yyy^y. Consider the function g(t)=tt=etlntg(t) = t^t = e^{t \ln t}. Its derivative g(t)=tt(lnt+1)g'(t) = t^t (\ln t + 1). g(t)g(t) is decreasing for t(0,1/e)t \in (0, 1/e) and increasing for t(1/e,1)t \in (1/e, 1). The minimum is at t=1/e0.367t=1/e \approx 0.367, with value (1/e)1/e0.692(1/e)^{1/e} \approx 0.692. For θ(0,π/4)\theta \in (0, \pi/4), we have x=sinθ(0,1/2)x = \sin\theta \in (0, 1/\sqrt{2}) and y=cosθ(1/2,1)y = \cos\theta \in (1/\sqrt{2}, 1). Note 1/20.7071/\sqrt{2} \approx 0.707. Since 1/e<1/21/e < 1/\sqrt{2}, cosθ\cos\theta is always in the increasing region of g(t)g(t) (i.e., cosθ>1/e\cos\theta > 1/e). sinθ\sin\theta can be in (0,1/e)(0, 1/e) or (1/e,1/2)(1/e, 1/\sqrt{2}). If sinθ(1/e,1/2)\sin\theta \in (1/e, 1/\sqrt{2}), then 1/e<sinθ<cosθ1/e < \sin\theta < \cos\theta. Since g(t)g(t) is increasing in (1/e,1)(1/e, 1), g(sinθ)<g(cosθ)    a<dg(\sin\theta) < g(\cos\theta) \implies a < d. If sinθ(0,1/e)\sin\theta \in (0, 1/e), then sinθ<1/e<cosθ\sin\theta < 1/e < \cos\theta. In this case, g(sinθ)g(\sin\theta) is on the decreasing part and g(cosθ)g(\cos\theta) is on the increasing part. However, for θ(0,π/4)\theta \in (0, \pi/4), it can be shown that (sinθ)sinθ<(cosθ)cosθ(\sin\theta)^{\sin\theta} < (\cos\theta)^{\cos\theta}. For example, if θ0+\theta \to 0^+, a1a \to 1 and d1d \to 1. If θ=π/6\theta = \pi/6, a=(1/2)1/20.707a = (1/2)^{1/2} \approx 0.707 and d=(3/2)3/20.90d = (\sqrt{3}/2)^{\sqrt{3}/2} \approx 0.90. So a<da < d. In general, for 0<sinθ<cosθ<10 < \sin\theta < \cos\theta < 1, it is true that (sinθ)sinθ<(cosθ)cosθ(\sin\theta)^{\sin\theta} < (\cos\theta)^{\cos\theta}. So, option (C) is correct.

  3. Compare abab and cdcd: ab=(sinθ)sinθ(sinθ)cosθ=(sinθ)sinθ+cosθab = (\sin\theta)^{\sin\theta} (\sin\theta)^{\cos\theta} = (\sin\theta)^{\sin\theta + \cos\theta} cd=(cosθ)sinθ(cosθ)cosθ=(cosθ)sinθ+cosθcd = (\cos\theta)^{\sin\theta} (\cos\theta)^{\cos\theta} = (\cos\theta)^{\sin\theta + \cos\theta} Let P=sinθ+cosθP = \sin\theta + \cos\theta. For θ(π/4,π/2)\theta \in (\pi/4, \pi/2), we have 2sin(θ+π/4)\sqrt{2} \sin(\theta+\pi/4), so P(1,2]P \in (1, \sqrt{2}]. Also for θ(π/4,π/2)\theta \in (\pi/4, \pi/2), we have cosθ<sinθ\cos\theta < \sin\theta. Let x=cosθx = \cos\theta and y=sinθy = \sin\theta. So 0<x<y<10 < x < y < 1. We need to compare yPy^P and xPx^P. Since P>0P > 0 and y>x>0y > x > 0, we have yP>xPy^P > x^P. Thus, (sinθ)sinθ+cosθ>(cosθ)sinθ+cosθ(\sin\theta)^{\sin\theta + \cos\theta} > (\cos\theta)^{\sin\theta + \cos\theta}, which means ab>cdab > cd. So, option (D) is correct.

All options (A), (B), (C), and (D) are correct.