Solveeit Logo

Question

Question: $\int \frac{\log_e x}{x\sqrt{1+\log_e x}}dx=$...

logexx1+logexdx=\int \frac{\log_e x}{x\sqrt{1+\log_e x}}dx=

A

(1+logex)3/2+c(1+\log_e x)^{3/2} + c

B

23(1+logex)(logex2)+c\frac{2}{3} (1 + \log_e x) (\log_e x - 2) + c

C

23(1+logex)1/2(logex5)+c\frac{2}{3} (1+\log_e x)^{1/2} (\log_e x - 5) + c

D

23(1+logex)1/2(logex2)+c\frac{2}{3} (1+\log_e x)^{1/2} (\log_e x - 2) + c

Answer

(d) 23(1+logex)1/2(logex2)+c\frac{2}{3} (1+\log_e x)^{1/2} (\log_e x - 2) + c

Explanation

Solution

The given integral is logexx1+logexdx\int \frac{\log_e x}{x\sqrt{1+\log_e x}}dx.

To solve this integral, we use the method of substitution. Let t=1+logext = 1 + \log_e x. Differentiating both sides with respect to xx, we get: dt=1xdxdt = \frac{1}{x} dx

From the substitution, we can also express logex\log_e x in terms of tt: logex=t1\log_e x = t - 1

Now, substitute these into the integral: logexx1+logexdx=t1tdt\int \frac{\log_e x}{x\sqrt{1+\log_e x}}dx = \int \frac{t-1}{\sqrt{t}} dt

We can split the integrand into two terms: (tt1t)dt\int \left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right) dt (t11/2t1/2)dt\int \left( t^{1 - 1/2} - t^{-1/2} \right) dt (t1/2t1/2)dt\int \left( t^{1/2} - t^{-1/2} \right) dt

Now, integrate each term using the power rule for integration, undu=un+1n+1+C\int u^n du = \frac{u^{n+1}}{n+1} + C: t1/2+11/2+1t1/2+11/2+1+C\frac{t^{1/2 + 1}}{1/2 + 1} - \frac{t^{-1/2 + 1}}{-1/2 + 1} + C t3/23/2t1/21/2+C\frac{t^{3/2}}{3/2} - \frac{t^{1/2}}{1/2} + C 23t3/22t1/2+C\frac{2}{3} t^{3/2} - 2 t^{1/2} + C

Now, substitute back t=1+logext = 1 + \log_e x into the expression: 23(1+logex)3/22(1+logex)1/2+C\frac{2}{3} (1 + \log_e x)^{3/2} - 2 (1 + \log_e x)^{1/2} + C

To match the options, we can factor out common terms. The common term is 23(1+logex)1/2\frac{2}{3} (1 + \log_e x)^{1/2}: 23(1+logex)1/2[(1+logex)232]+C\frac{2}{3} (1 + \log_e x)^{1/2} \left[ (1 + \log_e x) - \frac{2 \cdot 3}{2} \right] + C 23(1+logex)1/2[(1+logex)3]+C\frac{2}{3} (1 + \log_e x)^{1/2} \left[ (1 + \log_e x) - 3 \right] + C 23(1+logex)1/2[logex+13]+C\frac{2}{3} (1 + \log_e x)^{1/2} \left[ \log_e x + 1 - 3 \right] + C 23(1+logex)1/2(logex2)+C\frac{2}{3} (1 + \log_e x)^{1/2} (\log_e x - 2) + C

Comparing this result with the given options, it matches option (d).

The final answer is (d)\boxed{\text{(d)}}.

Explanation of the solution: The integral is solved using substitution. Let t=1+logext = 1 + \log_e x, which implies dt=1xdxdt = \frac{1}{x} dx and logex=t1\log_e x = t - 1. Substituting these into the integral transforms it into t1tdt\int \frac{t-1}{\sqrt{t}} dt. This simplifies to (t1/2t1/2)dt\int (t^{1/2} - t^{-1/2}) dt. Integrating term by term yields 23t3/22t1/2+C\frac{2}{3} t^{3/2} - 2 t^{1/2} + C. Finally, substitute t=1+logext = 1 + \log_e x back and factor the expression to get 23(1+logex)1/2(logex2)+C\frac{2}{3} (1 + \log_e x)^{1/2} (\log_e x - 2) + C.