Solveeit Logo

Question

Question: If function defined by f(x) = $\begin{cases} \frac{(x-m)}{|x-m|}, & x \leq 0 \\ 2x^2 + 3ax + b, & 0 ...

If function defined by f(x) = {(xm)xm,x02x2+3ax+b,0<x<1, is continuous & differentiablem2x+b2,x1\begin{cases} \frac{(x-m)}{|x-m|}, & x \leq 0 \\ 2x^2 + 3ax + b, & 0 < x < 1, \text{ is continuous \& differentiable} \\ m^2x + b - 2, & x \geq 1 \end{cases}

everywhere, then:

A

b + m = -1

B

b + m = 1

C

b + m = -3

D

m² + a + b = 3

Answer

b + m = 1, m² + a + b = 3

Explanation

Solution

The given function is: f(x)={(xm)xm,x02x2+3ax+b,0<x<1m2x+b2,x1f(x) = \begin{cases} \frac{(x-m)}{|x-m|}, & x \leq 0 \\ 2x^2 + 3ax + b, & 0 < x < 1 \\ m^2x + b - 2, & x \geq 1 \end{cases}

The function is continuous and differentiable everywhere.

Step 1: Analyze the first piece of the function for x0x \leq 0.

For f(x)f(x) to be defined for all x0x \leq 0, the denominator xm|x-m| must not be zero. This means xmx \neq m for any x0x \leq 0.
Therefore, mm cannot be in the interval (,0](-\infty, 0]. This implies m>0m > 0.
If m>0m > 0, then for any x0x \leq 0, xmx-m will always be negative.
So, xm=(xm)|x-m| = -(x-m).
Thus, f(x)=xm(xm)=1f(x) = \frac{x-m}{-(x-m)} = -1 for all x0x \leq 0.
This part of the function is a constant, so it is continuous and differentiable for x<0x < 0, and its derivative is 00.

Now the function can be rewritten as: f(x)={1,x02x2+3ax+b,0<x<1m2x+b2,x1f(x) = \begin{cases} -1, & x \leq 0 \\ 2x^2 + 3ax + b, & 0 < x < 1 \\ m^2x + b - 2, & x \geq 1 \end{cases} And we have the condition m>0m > 0.

Step 2: Apply continuity and differentiability conditions at x=0x=0.

For continuity at x=0x=0:
limx0f(x)=f(0)=1\lim_{x \to 0^-} f(x) = f(0) = -1
limx0+f(x)=limx0+(2x2+3ax+b)=2(0)2+3a(0)+b=b\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x^2 + 3ax + b) = 2(0)^2 + 3a(0) + b = b
For continuity, the left-hand limit, right-hand limit, and function value must be equal:
b=1b = -1.

For differentiability at x=0x=0:
First, find the derivatives of the respective pieces:
f(x)={0,x<04x+3a,0<x<1m2,x>1f'(x) = \begin{cases} 0, & x < 0 \\ 4x + 3a, & 0 < x < 1 \\ m^2, & x > 1 \end{cases}
Left-hand derivative at x=0x=0: f(0)=0f'(0^-) = 0.
Right-hand derivative at x=0x=0: f(0+)=limx0+(4x+3a)=4(0)+3a=3af'(0^+) = \lim_{x \to 0^+} (4x + 3a) = 4(0) + 3a = 3a.
For differentiability, f(0)=f(0+)f'(0^-) = f'(0^+):
0=3a    a=00 = 3a \implies a = 0.

So far, we have a=0a=0 and b=1b=-1. The function becomes: f(x)={1,x02x21,0<x<1m2x12,x1f(x) = \begin{cases} -1, & x \leq 0 \\ 2x^2 - 1, & 0 < x < 1 \\ m^2x - 1 - 2, & x \geq 1 \end{cases}
f(x)={1,x02x21,0<x<1m2x3,x1f(x) = \begin{cases} -1, & x \leq 0 \\ 2x^2 - 1, & 0 < x < 1 \\ m^2x - 3, & x \geq 1 \end{cases}

Step 3: Apply continuity and differentiability conditions at x=1x=1.

For continuity at x=1x=1:
limx1f(x)=limx1(2x21)=2(1)21=1\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2x^2 - 1) = 2(1)^2 - 1 = 1.
limx1+f(x)=f(1)=m2(1)3=m23\lim_{x \to 1^+} f(x) = f(1) = m^2(1) - 3 = m^2 - 3.
For continuity:
1=m23    m2=41 = m^2 - 3 \implies m^2 = 4.

For differentiability at x=1x=1:
Left-hand derivative at x=1x=1: f(1)=limx1(4x)=4(1)=4f'(1^-) = \lim_{x \to 1^-} (4x) = 4(1) = 4.
Right-hand derivative at x=1x=1: f(1+)=limx1+(m2)=m2f'(1^+) = \lim_{x \to 1^+} (m^2) = m^2.
For differentiability:
4=m24 = m^2.

Both continuity and differentiability conditions at x=1x=1 give m2=4m^2 = 4.
Since we established m>0m > 0, we take the positive root: m=2m = 2.

Step 4: Summarize the values of constants and check the options.

The determined values are:
a=0a = 0
b=1b = -1
m=2m = 2

Now, let's check the given options:
(A) b+m=(1)+2=1b + m = (-1) + 2 = 1.
(B) b+m=1b + m = 1. (This is true)
(C) b+m=3b + m = -3. (This is false)
(D) m2+a+b=(2)2+0+(1)=4+01=3m^2 + a + b = (2)^2 + 0 + (-1) = 4 + 0 - 1 = 3. (This is true)

Both options (B) and (D) are correct based on the derived values of a,b,ma, b, m.