Solveeit Logo

Question

Question: If $D_r = \begin{vmatrix} r & 2012 & 2013 \\ 11r^2 & 3r & r \\ r & \frac{1}{r} & \frac{1}{r^2} \end{...

If Dr=r2012201311r23rrr1r1r2D_r = \begin{vmatrix} r & 2012 & 2013 \\ 11r^2 & 3r & r \\ r & \frac{1}{r} & \frac{1}{r^2} \end{vmatrix}, then r=15Dr\sum_{r=1}^{5}D_r is equal to-

A

0

B

155

C

2013

D

-2012

Answer

0

Explanation

Solution

To solve the problem, we first need to evaluate the determinant DrD_r. The given determinant is: Dr=r2012201311r23rrr1r1r2D_r = \begin{vmatrix} r & 2012 & 2013 \\ 11r^2 & 3r & r \\ r & \frac{1}{r} & \frac{1}{r^2} \end{vmatrix}

We can expand the determinant along the first row: Dr=r((3r)(1r2)(r)(1r))2012((11r2)(1r2)(r)(r))+2013((11r2)(1r)(3r)(r))D_r = r \left( (3r) \left(\frac{1}{r^2}\right) - (r) \left(\frac{1}{r}\right) \right) - 2012 \left( (11r^2) \left(\frac{1}{r^2}\right) - (r)(r) \right) + 2013 \left( (11r^2) \left(\frac{1}{r}\right) - (3r)(r) \right)

Simplify each term:

  1. First term: r(3rr2rr)=r(3r1)=3rr \left( \frac{3r}{r^2} - \frac{r}{r} \right) = r \left( \frac{3}{r} - 1 \right) = 3 - r

  2. Second term: 2012(11r2r2r2)=2012(11r2)=2012×11+2012r2=22132+2012r2-2012 \left( \frac{11r^2}{r^2} - r^2 \right) = -2012 (11 - r^2) = -2012 \times 11 + 2012r^2 = -22132 + 2012r^2

  3. Third term: 2013(11r2r3r2)=2013(11r3r2)=2013×11r2013×3r2=22143r6039r22013 \left( \frac{11r^2}{r} - 3r^2 \right) = 2013 (11r - 3r^2) = 2013 \times 11r - 2013 \times 3r^2 = 22143r - 6039r^2

Now, combine these terms to get DrD_r: Dr=(3r)+(22132+2012r2)+(22143r6039r2)D_r = (3 - r) + (-22132 + 2012r^2) + (22143r - 6039r^2)

Group terms by powers of rr: Dr=(2012r26039r2)+(r+22143r)+(322132)D_r = (2012r^2 - 6039r^2) + (-r + 22143r) + (3 - 22132) Dr=(20126039)r2+(1+22143)r+(322132)D_r = (2012 - 6039)r^2 + (-1 + 22143)r + (3 - 22132) Dr=4027r2+22142r22129D_r = -4027r^2 + 22142r - 22129

Next, we need to calculate the sum r=15Dr\sum_{r=1}^{5} D_r: r=15Dr=r=15(4027r2+22142r22129)\sum_{r=1}^{5} D_r = \sum_{r=1}^{5} (-4027r^2 + 22142r - 22129) This can be written as: r=15Dr=4027r=15r2+22142r=15r22129r=151\sum_{r=1}^{5} D_r = -4027 \sum_{r=1}^{5} r^2 + 22142 \sum_{r=1}^{5} r - 22129 \sum_{r=1}^{5} 1

We use the sum formulas for powers of natural numbers: r=1nr=n(n+1)2\sum_{r=1}^{n} r = \frac{n(n+1)}{2} r=1nr2=n(n+1)(2n+1)6\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}

For n=5n=5: r=15r=5(5+1)2=5×62=15\sum_{r=1}^{5} r = \frac{5(5+1)}{2} = \frac{5 \times 6}{2} = 15 r=15r2=5(5+1)(2×5+1)6=5×6×116=55\sum_{r=1}^{5} r^2 = \frac{5(5+1)(2 \times 5+1)}{6} = \frac{5 \times 6 \times 11}{6} = 55 r=151=5\sum_{r=1}^{5} 1 = 5

Substitute these values into the sum expression: r=15Dr=4027(55)+22142(15)22129(5)\sum_{r=1}^{5} D_r = -4027(55) + 22142(15) - 22129(5)

Calculate the products: 4027×55=221485-4027 \times 55 = -221485 22142×15=33213022142 \times 15 = 332130 22129×5=110645-22129 \times 5 = -110645

Now, sum these values: r=15Dr=221485+332130110645\sum_{r=1}^{5} D_r = -221485 + 332130 - 110645 r=15Dr=332130(221485+110645)\sum_{r=1}^{5} D_r = 332130 - (221485 + 110645) r=15Dr=332130332130\sum_{r=1}^{5} D_r = 332130 - 332130 r=15Dr=0\sum_{r=1}^{5} D_r = 0

The final answer is 0\boxed{0}.