Question
Question: $\displaystyle I = \int_{0}^{\pi} \tan^{-1}[\sec2x + \tan2x] \ dx$...
I=∫0πtan−1[sec2x+tan2x] dx

0
Solution
To evaluate the integral I=∫0πtan−1[sec2x+tan2x] dx, we first simplify the expression inside the tan−1 function.
-
Simplify the argument of tan−1: We have sec2x+tan2x=cos2x1+cos2xsin2x=cos2x1+sin2x. Using the identities 1+sin2x=cos2x+sin2x+2sinxcosx=(cosx+sinx)2 and cos2x=cos2x−sin2x=(cosx−sinx)(cosx+sinx): cos2x1+sin2x=(cosx−sinx)(cosx+sinx)(cosx+sinx)2=cosx−sinxcosx+sinx. Now, divide the numerator and denominator by cosx: cosxcosx−cosxsinxcosxcosx+cosxsinx=1−tanx1+tanx. This is the tangent addition formula: tan(4π+x)=1−tan(4π)tanxtan(4π)+tanx=1−tanx1+tanx. So, sec2x+tan2x=tan(4π+x).
-
Analyze the integrand tan−1(tan(4π+x)): The identity tan−1(tanθ)=θ is only valid for θ∈(−2π,2π). For x∈[0,π], the argument 4π+x ranges from 4π to 45π. We need to define the integrand piecewise:
-
If 4π+x∈[4π,2π), i.e., x∈[0,4π), then tan−1(tan(4π+x))=4π+x.
-
If 4π+x∈(2π,45π], i.e., x∈(4π,π], then tan−1(tan(4π+x))=(4π+x)−π=x−43π. This covers x∈(4π,π] since π<45π.
The expression sec2x+tan2x is undefined when cos2x=0, which occurs at 2x=2π,23π,…. For x∈[0,π], these points are x=4π and x=43π. These are points of discontinuity for the integrand. Therefore, the integral is an improper integral. We split the integral at these points.
The integrand f(x)=tan−1[sec2x+tan2x] is: f(x)={4π+xx−43πfor x∈[0,4π)for x∈(4π,π]
-
-
Evaluate the improper integral: I=∫0πf(x)dx=limϵ1→0+∫04π−ϵ1(4π+x)dx+limϵ2→0+,ϵ3→0+∫4π+ϵ243π−ϵ3(x−43π)dx+limϵ4→0+∫43π+ϵ4π(x−43π)dx.
Let's calculate each part:
-
∫04π(4π+x)dx=[4πx+2x2]04π=(4π⋅4π+21(4π)2)−0=16π2+32π2=322π2+π2=323π2.
-
∫4π43π(x−43π)dx=[2x2−43πx]4π43π =(21(43π)2−43π(43π))−(21(4π)2−43π(4π)) =(329π2−169π2)−(32π2−163π2) =(329π2−18π2)−(32π2−6π2) =32−9π2−32−5π2=32−9π2+5π2=32−4π2=−8π2.
-
∫43ππ(x−43π)dx=[2x2−43πx]43ππ =(2π2−43ππ)−(21(43π)2−43π(43π)) =(42π2−3π2)−(329π2−169π2) =−4π2−(329π2−18π2) =−4π2−32−9π2=−4π2+329π2=32−8π2+9π2=32π2.
Summing these parts: I=323π2−8π2+32π2=323π2−4π2+π2=320=0.
-
The final answer is 0.
Explanation of the solution:
-
Simplify the argument of tan−1: sec2x+tan2x=cos2x1+sin2x=(cosx−sinx)(cosx+sinx)(cosx+sinx)2=cosx−sinxcosx+sinx=1−tanx1+tanx=tan(4π+x).
-
Determine the piecewise definition of the integrand f(x)=tan−1(tan(4π+x)) over [0,π].
-
For x∈[0,4π), 4π+x∈[4π,2π), so f(x)=4π+x.
-
For x∈(4π,π], 4π+x∈(2π,45π], so f(x)=(4π+x)−π=x−43π.
-
-
The integral is improper due to discontinuities at x=4π and x=43π. Split the integral into three parts: I=∫04π(4π+x)dx+∫4π43π(x−43π)dx+∫43ππ(x−43π)dx.
-
Evaluate each definite integral:
-
∫04π(4π+x)dx=323π2.
-
∫4π43π(x−43π)dx=−8π2.
-
∫43ππ(x−43π)dx=32π2.
-
-
Sum the results: I=323π2−8π2+32π2=323π2−4π2+π2=0.