Solveeit Logo

Question

Question: For the following reaction in equilibrium $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ Vapour ...

For the following reaction in equilibrium

PCl5(g)PCl3(g)+Cl2(g)PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)

Vapour density is found to be 100 when 1 mole of PCl5PCl_5 is taken in a 10 litre flask at 27C27^\circ C. Calculate the equilibrium pressure.

A

1.57 atm

B

2.57 atm

C

3.57 atm

D

4.57 atm

Answer

2.57 atm

Explanation

Solution

The reaction is PCl5(g)PCl3(g)+Cl2(g)PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g). 1 mole of PCl5PCl_5 is taken. At equilibrium, let α\alpha be the degree of dissociation. The moles at equilibrium are: PCl5:(1α)PCl_5: (1-\alpha) PCl3:αPCl_3: \alpha Cl2:αCl_2: \alpha Total moles at equilibrium, ntotal=(1α)+α+α=1+αn_{total} = (1-\alpha) + \alpha + \alpha = 1+\alpha.

The molar mass of PCl5PCl_5 (M0M_0) is 31+5×35.5=208.531 + 5 \times 35.5 = 208.5 g/mol. The vapour density (VD) of the equilibrium mixture is given as 100. The molar mass of the equilibrium mixture (MmixM_{mix}) is 2×VD=2×100=2002 \times VD = 2 \times 100 = 200 g/mol.

For a reaction A(g)nB(g)A(g) \rightleftharpoons nB(g), the relationship between molar masses and degree of dissociation is Mmix=M01+(n1)αM_{mix} = \frac{M_0}{1+(n-1)\alpha}. In this case, PCl5PCl3+Cl2PCl_5 \rightleftharpoons PCl_3 + Cl_2, so n=2n=2. Thus, Mmix=M01+(21)α=M01+αM_{mix} = \frac{M_0}{1+(2-1)\alpha} = \frac{M_0}{1+\alpha}.

Substituting the values: 200=208.51+α200 = \frac{208.5}{1+\alpha} 1+α=208.5200=1.04251+\alpha = \frac{208.5}{200} = 1.0425 So, the total moles at equilibrium are ntotal=1+α=1.0425n_{total} = 1+\alpha = 1.0425 moles.

Now, we use the Ideal Gas Law, PV=nRTPV = nRT, to calculate the equilibrium pressure. Given: ntotal=1.0425n_{total} = 1.0425 moles V=10V = 10 litres T=27C=27+273=300T = 27^\circ C = 27 + 273 = 300 K R=0.0821R = 0.0821 L atm mol1^{-1} K1^{-1}

P=ntotalRTVP = \frac{n_{total}RT}{V} P=1.0425 mol×0.0821 L atm mol1 K1×300 K10 LP = \frac{1.0425 \text{ mol} \times 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1} \times 300 \text{ K}}{10 \text{ L}} P=1.0425×0.0821×30P = 1.0425 \times 0.0821 \times 30 P=2.56754625P = 2.56754625 atm.

Rounding to two decimal places, the equilibrium pressure is approximately 2.57 atm.