Solveeit Logo

Question

Question: Commercially available concentrated hydrochloric acid contains 38% HCl by mass having density 1.19 g...

Commercially available concentrated hydrochloric acid contains 38% HCl by mass having density 1.19 g cm3cm^{-3} What volume (in cc) of concentrated hydrochloric acid is required to make 1.00 L of 0.10 M HCl?

A

12.38

B

6.19

C

4

D

8.1

Answer

8.1

Explanation

Solution

  1. Calculate the molarity of the concentrated HCl solution.

    • Given: 38% HCl by mass, density = 1.19 g/cm³ (or 1.19 g/mL).
    • Assume 100 g of the concentrated solution.
    • Mass of HCl = 38 g.
    • Volume of solution = MassDensity=100 g1.19 g/mL84.03 mL\frac{\text{Mass}}{\text{Density}} = \frac{100 \text{ g}}{1.19 \text{ g/mL}} \approx 84.03 \text{ mL}
    • Molar mass of HCl = 1 (H) + 35.5 (Cl) = 36.5 g/mol.
    • Number of moles of HCl = Mass of HClMolar mass of HCl=38 g36.5 g/mol1.041 mol\frac{\text{Mass of HCl}}{\text{Molar mass of HCl}} = \frac{38 \text{ g}}{36.5 \text{ g/mol}} \approx 1.041 \text{ mol}.
    • Molarity (M1M_1) = Moles of soluteVolume of solution in Liters\frac{\text{Moles of solute}}{\text{Volume of solution in Liters}}
    • Volume of solution in Liters = 84.03 mL×1 L1000 mL=0.08403 L84.03 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.08403 \text{ L}.
    • M1=1.041 mol0.08403 L12.388 MM_1 = \frac{1.041 \text{ mol}}{0.08403 \text{ L}} \approx 12.388 \text{ M}. We use 12.38 M for consistency with common exam values.
  2. Use the dilution formula M1V1=M2V2M_1V_1 = M_2V_2.

    • M1M_1 = Molarity of concentrated HCl = 12.38 M

    • V1V_1 = Volume of concentrated HCl required (in mL or cc) = ?

    • M2M_2 = Molarity of the desired dilute solution = 0.10 M

    • V2V_2 = Volume of the desired dilute solution = 1.00 L = 1000 mL.

    • 12.38 M×V1=0.10 M×1000 mL12.38 \text{ M} \times V_1 = 0.10 \text{ M} \times 1000 \text{ mL}

    • V1=0.10 M×1000 mL12.38 MV_1 = \frac{0.10 \text{ M} \times 1000 \text{ mL}}{12.38 \text{ M}}

    • V1=10012.38 mL8.0775 mLV_1 = \frac{100}{12.38} \text{ mL} \approx 8.0775 \text{ mL}

    Since 1 cc = 1 mL, the volume required is approximately 8.0775 cc. The closest option is 8.1 cc.