Solveeit Logo

Question

Question: Calculate $\Delta G^{\circ}$ for the following cell reaction $Zn(s) + Ag_2O(s) + H_2O(l) \rightarro...

Calculate ΔG\Delta G^{\circ} for the following cell reaction

Zn(s)+Ag2O(s)+H2O(l)Zn2+(aq)+2Ag(s)+2OH(aq)Zn(s) + Ag_2O(s) + H_2O(l) \rightarrow Zn^{2+}(aq) + 2Ag(s) + 2OH^-(aq)

EAg+/Ag0=+0.80VE_{Ag^+/Ag}^0 = +0.80V and EZn+2/Zn0=0.76V,F=96500E_{Zn^{+2}/Zn}^0 = -0.76V, F = 96500

A

-305kJ/mol

B

212 kJ/mol

C

305 kJ/mol

D

301 kJ/mol

Answer

-305kJ/mol

Explanation

Solution

To calculate ΔG\Delta G^{\circ}, we use the formula:

ΔG=nFEcell\Delta G^{\circ} = -nFE_{cell}^{\circ}

First, we need to identify the half-reactions and the number of electrons (nn) transferred.

  1. Oxidation half-reaction (Anode):

Zn(s)Zn2+(aq)+2eZn(s) \rightarrow Zn^{2+}(aq) + 2e^-

  1. Reduction half-reaction (Cathode):

Ag2O(s)+H2O(l)+2e2Ag(s)+2OH(aq)Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)

From the balanced half-reactions, it is clear that n=2n=2 electrons are transferred in the overall reaction.

Next, we calculate the standard cell potential (EcellE_{cell}^{\circ}). The standard electrode potentials given are:

EAg+/Ag0=+0.80VE_{Ag^+/Ag}^0 = +0.80V (Standard reduction potential for the cathode)

EZn2+/Zn0=0.76VE_{Zn^{2+}/Zn}^0 = -0.76V (Standard reduction potential for the anode)

The standard cell potential is calculated as:

Ecell=EcathodeEanodeE_{cell}^{\circ} = E_{cathode}^{\circ} - E_{anode}^{\circ}

Ecell=EAg+/Ag0EZn2+/Zn0E_{cell}^{\circ} = E_{Ag^+/Ag}^0 - E_{Zn^{2+}/Zn}^0

Ecell=(+0.80V)(0.76V)E_{cell}^{\circ} = (+0.80V) - (-0.76V)

Ecell=0.80V+0.76VE_{cell}^{\circ} = 0.80V + 0.76V

Ecell=1.56VE_{cell}^{\circ} = 1.56V

Now, substitute the values of nn, FF, and EcellE_{cell}^{\circ} into the ΔG\Delta G^{\circ} formula: Given Faraday constant F=96500F = 96500 C/mol.

ΔG=(2 mol)(96500 C/mol)(1.56 V)\Delta G^{\circ} = -(2 \text{ mol})(96500 \text{ C/mol})(1.56 \text{ V})

ΔG=301080 J\Delta G^{\circ} = -301080 \text{ J}

To express ΔG\Delta G^{\circ} in kilojoules (kJ), divide by 1000:

ΔG=301.08 kJ/mol\Delta G^{\circ} = -301.08 \text{ kJ/mol}

Our calculated value is -301.08 kJ/mol. Option (A) is -305 kJ/mol. While not an exact match, it is the only option with the correct sign and is numerically the closest among the negative options.