Solveeit Logo

Question

Question: An opaque sphere of radius a is just immersed in a transparent liquid as shown in the figure. A poin...

An opaque sphere of radius a is just immersed in a transparent liquid as shown in the figure. A point source is placed on a vertical diameter of the sphere at a distance a2\frac{a}{2} from the top of the sphere. One ray originating from the point source after refraction from the air liquid interface forms tangent to the sphere. The angle of refraction for that particular ray is 3030^\circ. The refractive index of the liquid is

A

23\frac{2}{\sqrt{3}}

B

35\frac{3}{\sqrt{5}}

C

45\frac{4}{\sqrt{5}}

D

47\frac{4}{\sqrt{7}}

Answer

47\frac{4}{\sqrt{7}}

Explanation

Solution

We set up the problem by choosing a coordinate system so that the horizontal liquid–air interface is at y=0y=0. “Just immersed” means that the sphere touches the interface at its top. Choosing

Top T=(0,0),Center C=(0,a),Radius =a,\text{Top } T=(0,0),\quad \text{Center } C=(0,a),\quad \text{Radius } = a,

the sphere is described by

x2+(ya)2=a2.x^2+(y-a)^2=a^2.

The point source is said to lie on a vertical line through the sphere, at a distance a2\frac{a}{2} from the top. (It is more natural here to assume that the source is above the interface so that its light enters the liquid.) Thus, with the positive y y–axis directed downward, we take the source as

S=(0,a/2).S=(0,-a/2).

A ray from SS meets the interface at R=(xR,0)R=(x_R,0). In air (with refractive index 1), the ray makes an incident angle

sini=xRxR2+(a/2)2.\sin i=\frac{|x_R|}{\sqrt{x_R^2+(a/2)^2}}.

After refraction at RR into the liquid (of refractive index nn) the ray makes an angle r=30r=30^\circ with the vertical (normal to the interface). Snell’s law gives

sini=nsin30=n2.\sin i = n\,\sin 30^\circ = \frac{n}{2}.

Thus,

xRxR2+(a/2)2=n2.\frac{|x_R|}{\sqrt{x_R^2+(a/2)^2}}=\frac{n}{2}.

Squaring both sides we obtain

xR2xR2+a2/4=n24(4n2)xR2=n2a24.\frac{x_R^2}{x_R^2+a^2/4}=\frac{n^2}{4} \quad \Longrightarrow \quad (4-n^2)x_R^2=\frac{n^2a^2}{4}.

Therefore,

xR2=n2a24(4n2).(A)x_R^2=\frac{n^2a^2}{4(4-n^2)}. \tag{A}

Now, the ray (in the liquid) emerging from RR has direction making 3030^\circ with the vertical. Choosing (without loss of generality) the positive xx–direction we have the direction vector

d^=(sin30,cos30)=(0.5,3/2).\hat{d}=(\sin 30^\circ,\cos 30^\circ)=(0.5,\,\sqrt{3}/2).

Thus the ray in the liquid is given by

r(t)=(xR+0.5t,  0+(3/2)t).\vec{r}(t)=(x_R+0.5\,t,\;0+(\sqrt{3}/2)\,t).

Let the ray touch the sphere at the tangent point QQ. At tangency, the radius drawn to QQ is perpendicular to the ray’s direction. With Q=(xR+0.5t0,(3/2)t0)Q=(x_R+0.5\,t_0,\,(\sqrt{3}/2)\,t_0) and C=(0,a)C=(0,a), the tangency condition is:

[(xR+0.5t0)0,  (3/2t0)a](0.5,3/2)=0.\big[(x_R+0.5\,t_0)-0,\;(\sqrt{3}/2\,t_0)-a\big]\cdot (0.5,\,\sqrt{3}/2)=0.

Calculating the dot product:

0.5(xR+0.5t0)+32(3t02a)=0.0.5\,(x_R+0.5t_0)+\frac{\sqrt{3}}{2}\Big(\frac{\sqrt{3}\,t_0}{2}-a\Big)=0.

Note that 3232=34\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{3}{4}. Hence,

0.5xR+0.25t0+0.75t032a=00.5xR+t032a=0,0.5\,x_R+0.25\,t_0+0.75\,t_0-\frac{\sqrt{3}}{2}\,a=0 \quad \Longrightarrow \quad 0.5\,x_R+t_0-\frac{\sqrt{3}}{2}\,a=0,

so that

t0=32a0.5xR.(1)t_0=\frac{\sqrt{3}}{2}\,a-0.5\,x_R. \tag{1}

Since QQ lies on the sphere, it must satisfy

[xR+0.5t0]2+[32t0a]2=a2.(2)\Big[x_R+0.5\,t_0\Big]^2+\Big[\frac{\sqrt{3}}{2}\,t_0-a\Big]^2=a^2. \tag{2}

Substitute t0t_0 from (1):

0.5t0=  0.5(32a0.5xR)=34a0.25xR,0.5\,t_0=\;0.5\left(\frac{\sqrt{3}}{2}\,a-0.5\,x_R\right)=\frac{\sqrt{3}}{4}\,a-0.25\,x_R,

and

32t0=32(32a0.5xR)=34a34xR.\frac{\sqrt{3}}{2}\,t_0=\frac{\sqrt{3}}{2}\left(\frac{\sqrt{3}}{2}\,a-0.5\,x_R\right)=\frac{3}{4}\,a- \frac{\sqrt{3}}{4}\,x_R.

Thus, the coordinates of QQ become:

xQ=xR+34a0.25xR=0.75xR+34a,x_Q=x_R+ \frac{\sqrt{3}}{4}\,a-0.25\,x_R =0.75\,x_R+\frac{\sqrt{3}}{4}\,a, yQ=34a34xR.y_Q=\frac{3}{4}\,a-\frac{\sqrt{3}}{4}\,x_R.

Plugging these in the sphere equation (2):

(0.75xR+34a)2+[(34a34xR)a]2=a2.\left(0.75\,x_R+\frac{\sqrt{3}}{4}\,a\right)^2+\left[\left(\frac{3}{4}\,a-\frac{\sqrt{3}}{4}\,x_R\right)-a\right]^2=a^2.

Notice that

(34a34xRa)=14a34xR.\left(\frac{3}{4}\,a-\frac{\sqrt{3}}{4}\,x_R-a\right)= -\frac{1}{4}\,a-\frac{\sqrt{3}}{4}\,x_R.

Expanding both squares (and using exact values 0.75=340.75=\frac{3}{4} and 34\frac{\sqrt{3}}{4}):

(34xR+34a)2+(14a+34xR)2=a2.\left(\frac{3}{4}x_R+\frac{\sqrt{3}}{4}a\right)^2+ \left(\frac{1}{4}a+\frac{\sqrt{3}}{4}x_R\right)^2=a^2.

Expanding,

916xR2+23316axR+316a2+116a2+2316axR+316xR2=a2.\frac{9}{16}x_R^2+\frac{2\cdot3\sqrt{3}}{16}a\,x_R+\frac{3}{16}a^2+\frac{1}{16}a^2+\frac{2\sqrt{3}}{16}a\,x_R+\frac{3}{16}x_R^2=a^2.

Combine like terms:

  • Coefficient of xR2x_R^2: 916+316=1216=34\frac{9}{16}+\frac{3}{16}=\frac{12}{16}=\frac{3}{4}.
  • Coefficient of axRax_R: 6316+2316=8316=32\frac{6\sqrt{3}}{16}+\frac{2\sqrt{3}}{16}=\frac{8\sqrt{3}}{16}=\frac{\sqrt{3}}{2}.
  • Coefficient of a2a^2: 316+116=14\frac{3}{16}+\frac{1}{16}=\frac{1}{4}.

Thus the equation reduces to:

34xR2+32axR+14a2=a2.\frac{3}{4}x_R^2+\frac{\sqrt{3}}{2}a\,x_R+\frac{1}{4}a^2=a^2.

Multiply through by 4 to clear denominators:

3xR2+23axR+a2=4a2,3x_R^2+2\sqrt{3}\,a\,x_R+a^2=4a^2,

or

3xR2+23axR3a2=0.3x_R^2+2\sqrt{3}\,a\,x_R-3a^2=0.

Dividing by 3:

xR2+233axRa2=0.(3)x_R^2+\frac{2\sqrt{3}}{3}\,a\,x_R-a^2=0. \tag{3}

Solve (3) using the quadratic formula:

xR=233a±(233a)2+4a22.x_R=\frac{-\frac{2\sqrt{3}}{3}a\pm\sqrt{\left(\frac{2\sqrt{3}}{3}a\right)^2+4a^2}}{2}.

Compute the discriminant:

(233a)2+4a2=439a2+4a2=43a2+4a2=163a2.\left(\frac{2\sqrt{3}}{3}a\right)^2+4a^2=\frac{4\cdot 3}{9}a^2+4a^2=\frac{4}{3}a^2+4a^2=\frac{16}{3}a^2.

Thus,

xR=233a±43a2.x_R=\frac{-\frac{2\sqrt{3}}{3}a\pm\frac{4}{\sqrt{3}}a}{2}.

Taking the positive root (since xRx_R is taken as positive),

xR=233a+4a32=(23+433)a2=233a2=a33.x_R=\frac{-\frac{2\sqrt{3}}{3}a+\frac{4a}{\sqrt{3}}}{2}=\frac{\left(\frac{-2\sqrt{3}+4\sqrt{3}}{3}\right)a}{2}=\frac{\frac{2\sqrt{3}}{3}a}{2}=\frac{a\sqrt{3}}{3}.

Now equate this result with our earlier relation (A):

a23=n2a24(4n2).\frac{a^2}{3}=\frac{n^2a^2}{4(4-n^2)}.

Cancel a2a^2 (with a0a\neq0) and cross–multiply:

4(4n2)=3n2.4(4-n^2)=3n^2.

That is,

164n2=3n216=7n2,16-4n^2=3n^2\quad\Longrightarrow\quad16=7n^2,

so that,

n2=167n=47.n^2=\frac{16}{7}\quad\Longrightarrow\quad n=\frac{4}{\sqrt{7}}.

Thus, the refractive index of the liquid is 47\displaystyle \frac{4}{\sqrt{7}} which is option D.


Summary of the solution:

  1. Coordinate Setup:

    • Interface at y=0y=0, sphere with center (0,a)(0,a) and radius aa; top touches (0,0)(0,0).
    • Point source taken at S=(0,a/2)S=(0,-a/2) (on the vertical through the sphere).
  2. For the ray coming from SS and refracting at R=(xR,0)R=(x_R,0):

    • By Snell’s law: xRxR2+(a/2)2=n2.\frac{|x_R|}{\sqrt{x_R^2+(a/2)^2}}=\frac{n}{2}.
    • This gives xR2=n2a24(4n2).x_R^2=\frac{n^2a^2}{4(4-n^2)}.
  3. Tangent Condition to the Sphere:

    • The ray (with direction (0.5,3/2)(0.5,\sqrt{3}/2)) touches the sphere tangentially, producing a second equation which on solution gives xR=a33.x_R=\frac{a\sqrt{3}}{3}.
  4. Combining the two results yields:

    n=47.n=\frac{4}{\sqrt{7}}.

Final Answer: 47\displaystyle \frac{4}{\sqrt{7}} (option D).

Subject: NCERT Physics – Optics
Chapter: Ray Optics
Topic: Refraction of Light