Solveeit Logo

Question

Question: AD and BE are the medians of a triangle ABC. If AD = 4, $\angle DAB=\frac{\pi}{6}$, $\angle ABE=\fra...

AD and BE are the medians of a triangle ABC. If AD = 4, DAB=π6\angle DAB=\frac{\pi}{6}, ABE=π3\angle ABE=\frac{\pi}{3}, then area of triangle ABC equals

A

83\frac{8}{3}

B

163\frac{16}{3}

C

323\frac{32}{3}

D

3239\frac{32\sqrt{3}}{9}

Answer

3239\frac{32\sqrt{3}}{9}

Explanation

Solution

Let G be the centroid of triangle ABC, which is the intersection point of the medians AD and BE.

  1. Properties of the Centroid: The centroid divides each median in the ratio 2:1. Given AD = 4, we have AG = (2/3)AD = (2/3) * 4 = 8/3.

  2. Analyze Triangle ABG: We are given the angles: DAB=π6\angle DAB = \frac{\pi}{6}. This is GAB\angle GAB. ABE=π3\angle ABE = \frac{\pi}{3}. This is GBA\angle GBA. The sum of these two angles in triangle ABG is: GAB+GBA=π6+π3=(π+2π)6=3π6=π2\angle GAB + \angle GBA = \frac{\pi}{6} + \frac{\pi}{3} = \frac{(\pi + 2\pi)}{6} = \frac{3\pi}{6} = \frac{\pi}{2}. Since the sum of two angles in ΔABG\Delta ABG is π2\frac{\pi}{2}, the third angle must be: AGB=π(GAB+GBA)=ππ2=π2\angle AGB = \pi - (\angle GAB + \angle GBA) = \pi - \frac{\pi}{2} = \frac{\pi}{2}. Thus, triangle ABG is a right-angled triangle with the right angle at G.

  3. Calculate side AB: In the right-angled triangle ABG, we know AG = 8/3 and GBA=π3\angle GBA = \frac{\pi}{3}. We can use the sine function: sin(GBA\angle GBA) = AG / AB sin(π3\frac{\pi}{3}) = (8/3) / AB 32\frac{\sqrt{3}}{2} = (8/3) / AB AB = (8/3) * (23\frac{2}{\sqrt{3}}) = 1633\frac{16}{3\sqrt{3}}.

  4. Calculate Area of Triangle ABD: Since AD is a median, it divides triangle ABC into two triangles of equal area: ΔABD\Delta ABD and ΔACD\Delta ACD. Therefore, Area(ΔABC\Delta ABC) = 2 * Area(ΔABD\Delta ABD). The area of ΔABD\Delta ABD can be calculated using the formula: Area = (1/2) * product of two sides * sine of the included angle. Area(ΔABD\Delta ABD) = (1/2) * AB * AD * sin(DAB\angle DAB) Substitute the known values: AB = 1633\frac{16}{3\sqrt{3}}, AD = 4, and DAB=π6\angle DAB = \frac{\pi}{6}. Area(ΔABD\Delta ABD) = (1/2) * (1633\frac{16}{3\sqrt{3}}) * 4 * sin(π6\frac{\pi}{6}) Area(ΔABD\Delta ABD) = (1/2) * (1633\frac{16}{3\sqrt{3}}) * 4 * (1/2) Area(ΔABD\Delta ABD) = (1/2) * (1633\frac{16}{3\sqrt{3}}) * 2 Area(ΔABD\Delta ABD) = 1633\frac{16}{3\sqrt{3}}.

  5. Calculate Area of Triangle ABC: Area(ΔABC\Delta ABC) = 2 * Area(ΔABD\Delta ABD) Area(ΔABC\Delta ABC) = 2 * (1633\frac{16}{3\sqrt{3}}) Area(ΔABC\Delta ABC) = 3233\frac{32}{3\sqrt{3}}.

  6. Rationalize the Denominator: To rationalize the denominator, multiply the numerator and denominator by 3\sqrt{3}: Area(ΔABC\Delta ABC) = (3233\frac{32}{3\sqrt{3}}) * (33\frac{\sqrt{3}}{\sqrt{3}}) Area(ΔABC\Delta ABC) = 32333\frac{32\sqrt{3}}{3 * 3} Area(ΔABC\Delta ABC) = 3239\frac{32\sqrt{3}}{9}.