Solveeit Logo

Question

Question: A metal cylinder of mass 0.5 kg is heated electrically by a 12 W heater in a room at 15°C. The cylin...

A metal cylinder of mass 0.5 kg is heated electrically by a 12 W heater in a room at 15°C. The cylinder temperature rises uniformly to 25°C in 5 min and finally becomes constant at 45°C. Assuming that the rate of heat loss is proportional to the excess temperature over the surroundings

A

The rate of loss of heat of the cylinder to surrounding at 20°C is 2 W

B

The rate of loss of heat of the cylinder to surrounding at 45°C is 2 W

C

Specific heat capacity of metal is 240ln(3/2)\frac{240}{ln(3/2)} J/kg°C

D

None of these

Answer

A, C

Explanation

Solution

At steady state, the temperature of the cylinder is constant at Tsteady=45T_{steady} = 45^\circC. The rate of heat supplied by the heater is equal to the rate of heat lost to the surroundings. Heater power, P=12P = 12 W. Ambient temperature, Ta=15T_a = 15^\circC. The rate of heat loss is proportional to the excess temperature over the surroundings: dQlossdt=k(TTa)\frac{dQ_{loss}}{dt} = k(T - T_a), where kk is a constant. At steady state: P=k(TsteadyTa)P = k(T_{steady} - T_a) 12 W=k(45C15C)12 \text{ W} = k(45^\circ\text{C} - 15^\circ\text{C}) 12=k(30C)12 = k(30^\circ\text{C}) k=1230 W/C=0.4 W/Ck = \frac{12}{30} \text{ W/}^\circ\text{C} = 0.4 \text{ W/}^\circ\text{C}.

Option (A): The rate of loss of heat of the cylinder to the surroundings at T=20T = 20^\circC. Excess temperature =TTa=20C15C=5C= T - T_a = 20^\circ\text{C} - 15^\circ\text{C} = 5^\circ\text{C}. Rate of heat loss =k×(excess temperature)= k \times (\text{excess temperature}) Rate of heat loss =0.4 W/C×5C=2 W= 0.4 \text{ W/}^\circ\text{C} \times 5^\circ\text{C} = 2 \text{ W}. Option (A) is correct.

Option (B): The rate of loss of heat of the cylinder to the surroundings at T=45T = 45^\circC. Excess temperature =TTa=45C15C=30C= T - T_a = 45^\circ\text{C} - 15^\circ\text{C} = 30^\circ\text{C}. Rate of heat loss =k×(excess temperature)= k \times (\text{excess temperature}) Rate of heat loss =0.4 W/C×30C=12 W= 0.4 \text{ W/}^\circ\text{C} \times 30^\circ\text{C} = 12 \text{ W}. Option (B) states the rate is 2 W, which is incorrect.

Option (C): To find the specific heat capacity (cc), we use the differential equation for heat transfer: mcdTdt=Pk(TTa)m \cdot c \cdot \frac{dT}{dt} = P - k(T - T_a) Let θ=TTa\theta = T - T_a. Then dθdt=dTdt\frac{d\theta}{dt} = \frac{dT}{dt}. mcdθdt=Pkθm \cdot c \cdot \frac{d\theta}{dt} = P - k\theta The cylinder temperature rises from T1=15T_1 = 15^\circC to T2=25T_2 = 25^\circC in Δt=5\Delta t = 5 min =300= 300 s. Assuming the cylinder was initially at room temperature, T(0)=15T(0) = 15^\circC. So, initial excess temperature θ(0)=15C15C=0C\theta(0) = 15^\circ\text{C} - 15^\circ\text{C} = 0^\circ\text{C}. At t=300t=300 s, the temperature is T(300)=25T(300) = 25^\circC. So, excess temperature at t=300t=300 s is θ(300)=25C15C=10C\theta(300) = 25^\circ\text{C} - 15^\circ\text{C} = 10^\circ\text{C}.

The integrated form of the differential equation mcdθdt=Pkθmc \frac{d\theta}{dt} = P - k\theta is: θ(t)=Pk(Pkθ(0))ekmct\theta(t) = \frac{P}{k} - \left(\frac{P}{k} - \theta(0)\right) e^{-\frac{k}{mc}t} We know Pk=12 W0.4 W/C=30C\frac{P}{k} = \frac{12 \text{ W}}{0.4 \text{ W/}^\circ\text{C}} = 30^\circ\text{C} (this is the steady-state excess temperature). So, θ(t)=30(30θ(0))ekmct\theta(t) = 30 - (30 - \theta(0)) e^{-\frac{k}{mc}t}. With θ(0)=0\theta(0) = 0: θ(t)=3030ekmct=30(1ekmct)\theta(t) = 30 - 30 e^{-\frac{k}{mc}t} = 30 (1 - e^{-\frac{k}{mc}t}). At t=300t=300 s, θ(300)=10\theta(300) = 10^\circC: 10=30(1ekmc×300)10 = 30 (1 - e^{-\frac{k}{mc} \times 300}) 1030=1ekmc×300\frac{10}{30} = 1 - e^{-\frac{k}{mc} \times 300} 13=1ekmc×300\frac{1}{3} = 1 - e^{-\frac{k}{mc} \times 300} ekmc×300=113=23e^{-\frac{k}{mc} \times 300} = 1 - \frac{1}{3} = \frac{2}{3}. Substitute k=0.4k=0.4 W/^\circC and m=0.5m=0.5 kg: e0.40.5×c×300=23e^{-\frac{0.4}{0.5 \times c} \times 300} = \frac{2}{3} e0.8c×300=23e^{-\frac{0.8}{c} \times 300} = \frac{2}{3} e240c=23e^{-\frac{240}{c}} = \frac{2}{3}. Taking the natural logarithm on both sides: 240c=ln(23)-\frac{240}{c} = \ln\left(\frac{2}{3}\right) 240c=ln(32)-\frac{240}{c} = - \ln\left(\frac{3}{2}\right) 240c=ln(32)\frac{240}{c} = \ln\left(\frac{3}{2}\right) c=240ln(3/2)c = \frac{240}{\ln(3/2)} J/kg°C. Option (C) is correct.