Solveeit Logo

Question

Question: ${12}_{c_0} \cdot {12}_{c_{10}} - {12}_{c_1} \cdot {12}_{c_9} + {12}_{c_2} \cdot {12}_{c_8} - {12}_{...

12c012c1012c112c9+12c212c812c312c712c1012c0=(ncr){12}_{c_0} \cdot {12}_{c_{10}} - {12}_{c_1} \cdot {12}_{c_9} + {12}_{c_2} \cdot {12}_{c_8} - {12}_{c_3} \cdot {12}_{c_7} \dots {12}_{c_{10}} \cdot {12}_{c_0} = -({n}_{c_r})

Answer

The expression is equal to 12C5-{^{12}C_5}. Thus, ncr=12C5{n}_{c_r} = {^{12}C_5}, which implies n=12n=12 and r=5r=5.

Explanation

Solution

The given sum is S=k=010(1)k12Ck12C10kS = \sum_{k=0}^{10} (-1)^k \cdot {^{12}C_k} \cdot {^{12}C_{10-k}}. This sum represents the coefficient of x10x^{10} in the expansion of (1+x)12(1x)12(1+x)^{12}(1-x)^{12}. (1+x)12(1x)12=((1+x)(1x))12=(1x2)12(1+x)^{12}(1-x)^{12} = ((1+x)(1-x))^{12} = (1-x^2)^{12}. The binomial expansion of (1x2)12(1-x^2)^{12} is j=01212Cj(x2)j=j=01212Cj(1)jx2j\sum_{j=0}^{12} {^{12}C_j} (-x^2)^j = \sum_{j=0}^{12} {^{12}C_j} (-1)^j x^{2j}. To find the coefficient of x10x^{10}, we set 2j=102j=10, which gives j=5j=5. The coefficient is 12C5(1)5=12C5{^{12}C_5}(-1)^5 = -{^{12}C_5}. Therefore, the given expression is equal to 12C5-{^{12}C_5}. Equating this to (ncr)-({n}_{c_r}), we have ncr=12C5{n}_{c_r} = {^{12}C_5}. From this, we can conclude that n=12n=12 and r=5r=5.