Solveeit Logo

Question

Question: If $|z|=1$ and $w = \frac{z}{z+1}$ where $z \ne -1$, then Re(w) is...

If z=1|z|=1 and w=zz+1w = \frac{z}{z+1} where z1z \ne -1, then Re(w) is

A

0

B

12+z+12-\frac{1}{2+|z+1|^2}

C

zz+11z+12|\frac{z}{z+1}| \frac{1}{|z+1|^2}

D

2z+12\frac{\sqrt{2}}{|z+1|^2}

Answer

12\frac{1}{2}

Explanation

Solution

Let z=eiθz=e^{i\theta} (since z=1|z|=1). Then

z+1=eiθ+1=2cosθ2eiθ/2.z+1 = e^{i\theta}+1 = 2\cos\frac{\theta}{2}\,e^{i\theta/2}.

Thus,

w=zz+1=eiθ2cosθ2eiθ/2=eiθ/22cosθ2.w=\frac{z}{z+1}=\frac{e^{i\theta}}{2\cos\frac{\theta}{2}\,e^{i\theta/2}}=\frac{e^{i\theta/2}}{2\cos\frac{\theta}{2}}.

Taking the real part,

(w)=cosθ22cosθ2=12.\Re(w)=\frac{\cos\frac{\theta}{2}}{2\cos\frac{\theta}{2}}=\frac{1}{2}.

None of the provided options match this result.