Solveeit Logo

Question

Question: Find the middle terms in the expansion of i) $\left(\frac{x}{y}+\frac{y}{x}\right)^{12}$...

Find the middle terms in the expansion of i) (xy+yx)12\left(\frac{x}{y}+\frac{y}{x}\right)^{12}

Answer

924 and 792*(y^2/x^2)

Explanation

Solution

The general term of the expansion

(xy+yx)12\left(\frac{x}{y}+\frac{y}{x}\right)^{12}

is

Tr+1=(12r)(xy)12r(yx)r=(12r)x122ry2r12.T_{r+1}=\binom{12}{r}\left(\frac{x}{y}\right)^{12-r}\left(\frac{y}{x}\right)^r = \binom{12}{r}x^{12-2r}y^{2r-12}.

Since there are 1313 terms, the two middle terms are for r=6r=6 and r=7r=7.

  • For r=6r=6:

    T7=(126)x1212y1212=(126)=924.T_7=\binom{12}{6}x^{12-12}y^{12-12}=\binom{12}{6}=924.
  • For r=7r=7:

    T8=(127)x1214y1412=(127)y2x2=792y2x2.T_8=\binom{12}{7}x^{12-14}y^{14-12}=\binom{12}{7}\frac{y^2}{x^2}=792\,\frac{y^2}{x^2}.

The middle terms are:

924and792y2x2.924 \quad \text{and} \quad 792\,\frac{y^2}{x^2}.