Solveeit Logo

Question

Question: Twi vibrating metal wires of the same material but of lengths 'L' and '2L' have radii '2r' and 'r' r...

Twi vibrating metal wires of the same material but of lengths 'L' and '2L' have radii '2r' and 'r' respectively. Two wires are vibrating with frequency 'n₁' and 'n₂' respectively. The two wires are stretched under same tension. The ratio of frequencies 'n₁' to 'n₂' is

A

8 : 1

B

2 : 1

C

4 : 1

D

1 : 1

Answer

1 : 1

Explanation

Solution

The frequency of a vibrating string is given by:

n=12LTμn = \frac{1}{2L}\sqrt{\frac{T}{\mu}}

where μ=ρA\mu = \rho A and AA is the cross‑sectional area.

For wire 1:

  • Length =L= L
  • Radius =2rA1=π(2r)2=4πr2= 2r \Rightarrow A_1 = \pi (2r)^2 = 4\pi r^2
μ1=ρ(4πr2)\mu_1 = \rho (4\pi r^2) n1=12LT4ρπr2n_1 = \frac{1}{2L}\sqrt{\frac{T}{4\rho\pi r^2}}

For wire 2:

  • Length =2L= 2L
  • Radius =rA2=πr2= r \Rightarrow A_2 = \pi r^2
μ2=ρ(πr2)\mu_2 = \rho (\pi r^2) n2=12(2L)Tρπr2=14LTρπr2n_2 = \frac{1}{2(2L)}\sqrt{\frac{T}{\rho\pi r^2}} = \frac{1}{4L}\sqrt{\frac{T}{\rho\pi r^2}}

Now, compute the ratio:

n1n2=12LT4ρπr214LTρπr2=12L×4L1×14=2×12=1\frac{n_1}{n_2} = \frac{\frac{1}{2L}\sqrt{\frac{T}{4\rho\pi r^2}}}{\frac{1}{4L}\sqrt{\frac{T}{\rho\pi r^2}}} = \frac{1}{2L} \times \frac{4L}{1} \times \sqrt{\frac{1}{4}} = 2 \times \frac{1}{2} = 1

So, the ratio n1:n2n_1 : n_2 is 1:11:1.