Question
Question: The value of the integral $\int_{0}^{\frac{1}{\sqrt{3}}} \sqrt{x+\sqrt{x^2+1}} dx$ is...
The value of the integral ∫031x+x2+1dx is

1
2/3
2
3/2
2/3
Solution
To evaluate the integral I=∫031x+x2+1dx, we use a hyperbolic substitution.
Let x=sinht.
Then dx=coshtdt.
Also, x2+1=sinh2t+1=cosh2t=cosht (since cosht>0).
Substitute these into the integrand:
x+x2+1=sinht+cosht.
We know that sinht+cosht=et.
So, the integrand becomes et=et/2.
Now, we need to change the limits of integration:
- When x=0:
sinht=0⟹t=0. - When x=31:
sinht=31.
Using the formula arsinh(y)=ln(y+y2+1):
t=ln(31+(31)2+1)
t=ln(31+31+1)
t=ln(31+34)
t=ln(31+32)
t=ln(33)=ln(3).
So the integral transforms to:
I=∫0ln(3)et/2coshtdt.
Now, express cosht in terms of exponentials: cosht=2et+e−t.
I=∫0ln(3)et/2(2et+e−t)dt
I=21∫0ln(3)(et/2et+et/2e−t)dt
I=21∫0ln(3)(e3t/2+e−t/2)dt.
Now, integrate term by term:
∫e3t/2dt=3/2e3t/2=32e3t/2.
∫e−t/2dt=−1/2e−t/2=−2e−t/2.
So, the definite integral is:
I=21[32e3t/2−2e−t/2]0ln(3)
I=[31e3t/2−e−t/2]0ln(3).
Now, evaluate at the limits:
At the upper limit t=ln(3):
e3t/2=e23ln(3)=eln((3)3/2)=(3)3/2=(31/2)3/2=33/4.
e−t/2=e−21ln(3)=eln((3)−1/2)=(3)−1/2=(31/2)−1/2=3−1/4.
So, at t=ln(3):
31(33/4)−3−1/4=3−133/4−3−1/4=3−1+3/4−3−1/4=3−1/4−3−1/4=0.
At the lower limit t=0:
31e3(0)/2−e−(0)/2=31e0−e0=31(1)−1=31−1=−32.
Finally, subtract the lower limit value from the upper limit value:
I=0−(−32)=32.