Solveeit Logo

Question

Question: The value of the integral $\int_{0}^{\frac{1}{\sqrt{3}}} \sqrt{x+\sqrt{x^2+1}} dx$ is...

The value of the integral 013x+x2+1dx\int_{0}^{\frac{1}{\sqrt{3}}} \sqrt{x+\sqrt{x^2+1}} dx is

A

1

B

2/3

C

2

D

3/2

Answer

2/3

Explanation

Solution

To evaluate the integral I=013x+x2+1dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \sqrt{x+\sqrt{x^2+1}} dx, we use a hyperbolic substitution.

Let x=sinhtx = \sinh t.
Then dx=coshtdtdx = \cosh t \, dt.
Also, x2+1=sinh2t+1=cosh2t=cosht\sqrt{x^2+1} = \sqrt{\sinh^2 t + 1} = \sqrt{\cosh^2 t} = \cosh t (since cosht>0\cosh t > 0).

Substitute these into the integrand:
x+x2+1=sinht+cosht\sqrt{x+\sqrt{x^2+1}} = \sqrt{\sinh t + \cosh t}.
We know that sinht+cosht=et\sinh t + \cosh t = e^t.
So, the integrand becomes et=et/2\sqrt{e^t} = e^{t/2}.

Now, we need to change the limits of integration:

  1. When x=0x=0:
    sinht=0    t=0\sinh t = 0 \implies t=0.
  2. When x=13x=\frac{1}{\sqrt{3}}:
    sinht=13\sinh t = \frac{1}{\sqrt{3}}.
    Using the formula arsinh(y)=ln(y+y2+1)\text{arsinh}(y) = \ln(y+\sqrt{y^2+1}):
    t=ln(13+(13)2+1)t = \ln\left(\frac{1}{\sqrt{3}} + \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2+1}\right)
    t=ln(13+13+1)t = \ln\left(\frac{1}{\sqrt{3}} + \sqrt{\frac{1}{3}+1}\right)
    t=ln(13+43)t = \ln\left(\frac{1}{\sqrt{3}} + \sqrt{\frac{4}{3}}\right)
    t=ln(13+23)t = \ln\left(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}\right)
    t=ln(33)=ln(3)t = \ln\left(\frac{3}{\sqrt{3}}\right) = \ln(\sqrt{3}).

So the integral transforms to:
I=0ln(3)et/2coshtdtI = \int_{0}^{\ln(\sqrt{3})} e^{t/2} \cosh t \, dt.

Now, express cosht\cosh t in terms of exponentials: cosht=et+et2\cosh t = \frac{e^t + e^{-t}}{2}.
I=0ln(3)et/2(et+et2)dtI = \int_{0}^{\ln(\sqrt{3})} e^{t/2} \left(\frac{e^t + e^{-t}}{2}\right) dt
I=120ln(3)(et/2et+et/2et)dtI = \frac{1}{2} \int_{0}^{\ln(\sqrt{3})} (e^{t/2} e^t + e^{t/2} e^{-t}) dt
I=120ln(3)(e3t/2+et/2)dtI = \frac{1}{2} \int_{0}^{\ln(\sqrt{3})} (e^{3t/2} + e^{-t/2}) dt.

Now, integrate term by term:
e3t/2dt=e3t/23/2=23e3t/2\int e^{3t/2} dt = \frac{e^{3t/2}}{3/2} = \frac{2}{3} e^{3t/2}.
et/2dt=et/21/2=2et/2\int e^{-t/2} dt = \frac{e^{-t/2}}{-1/2} = -2 e^{-t/2}.

So, the definite integral is:
I=12[23e3t/22et/2]0ln(3)I = \frac{1}{2} \left[ \frac{2}{3} e^{3t/2} - 2 e^{-t/2} \right]_{0}^{\ln(\sqrt{3})}
I=[13e3t/2et/2]0ln(3)I = \left[ \frac{1}{3} e^{3t/2} - e^{-t/2} \right]_{0}^{\ln(\sqrt{3})}.

Now, evaluate at the limits:
At the upper limit t=ln(3)t=\ln(\sqrt{3}):
e3t/2=e32ln(3)=eln((3)3/2)=(3)3/2=(31/2)3/2=33/4e^{3t/2} = e^{\frac{3}{2}\ln(\sqrt{3})} = e^{\ln((\sqrt{3})^{3/2})} = (\sqrt{3})^{3/2} = (3^{1/2})^{3/2} = 3^{3/4}.
et/2=e12ln(3)=eln((3)1/2)=(3)1/2=(31/2)1/2=31/4e^{-t/2} = e^{-\frac{1}{2}\ln(\sqrt{3})} = e^{\ln((\sqrt{3})^{-1/2})} = (\sqrt{3})^{-1/2} = (3^{1/2})^{-1/2} = 3^{-1/4}.

So, at t=ln(3)t=\ln(\sqrt{3}):
13(33/4)31/4=3133/431/4=31+3/431/4=31/431/4=0\frac{1}{3} (3^{3/4}) - 3^{-1/4} = 3^{-1} 3^{3/4} - 3^{-1/4} = 3^{-1+3/4} - 3^{-1/4} = 3^{-1/4} - 3^{-1/4} = 0.

At the lower limit t=0t=0:
13e3(0)/2e(0)/2=13e0e0=13(1)1=131=23\frac{1}{3} e^{3(0)/2} - e^{-(0)/2} = \frac{1}{3} e^0 - e^0 = \frac{1}{3}(1) - 1 = \frac{1}{3} - 1 = -\frac{2}{3}.

Finally, subtract the lower limit value from the upper limit value:
I=0(23)=23I = 0 - \left(-\frac{2}{3}\right) = \frac{2}{3}.