Solveeit Logo

Question

Question: The differential equation for the family of curves $y = c(x-c)^2$, where c is an arbitrary constant ...

The differential equation for the family of curves y=c(xc)2y = c(x-c)^2, where c is an arbitrary constant is:

A

y=(x+2ydxdy)(2ydxdy)2y = \left(x+2y\frac{dx}{dy}\right)\left(2y\frac{dx}{dy}\right)^2

B

y=(x2ydxdy)(2ydxdy)y = \left(x-2y\frac{dx}{dy}\right)\left(2y\frac{dx}{dy}\right)

C

y=(x2ydxdy)(2ydydx)2y = \left(x-2y\frac{dx}{dy}\right)\left(2y\frac{dy}{dx}\right)^2

D

y=(x2ydxdy)(2ydxdy)2y = \left(x-2y\frac{dx}{dy}\right)\left(2y\frac{dx}{dy}\right)^2

Answer

(D)

Explanation

Solution

To find the differential equation for the family of curves y=c(xc)2y = c(x-c)^2, we need to eliminate the arbitrary constant 'c'.

Given equation: y=c(xc)2(1)y = c(x-c)^2 \quad (1)

Differentiate equation (1) with respect to xx: dydx=ddx[c(xc)2]\frac{dy}{dx} = \frac{d}{dx} [c(x-c)^2] Since 'c' is a constant, we use the chain rule for (xc)2(x-c)^2: dydx=c2(xc)ddx(xc)\frac{dy}{dx} = c \cdot 2(x-c) \cdot \frac{d}{dx}(x-c) dydx=c2(xc)1\frac{dy}{dx} = c \cdot 2(x-c) \cdot 1 dydx=2c(xc)(2)\frac{dy}{dx} = 2c(x-c) \quad (2)

Now we have two equations:

  1. y=c(xc)2y = c(x-c)^2
  2. dydx=2c(xc)\frac{dy}{dx} = 2c(x-c)

We can eliminate 'c' and (xc)(x-c) terms. Divide equation (1) by equation (2): ydydx=c(xc)22c(xc)\frac{y}{\frac{dy}{dx}} = \frac{c(x-c)^2}{2c(x-c)} ydydx=xc2\frac{y}{\frac{dy}{dx}} = \frac{x-c}{2}

From this, we can express (xc)(x-c) in terms of yy and dydx\frac{dy}{dx}: xc=2ydydxx-c = \frac{2y}{\frac{dy}{dx}} Since 1dydx=dxdy\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}, we can write: xc=2ydxdy(3)x-c = 2y \frac{dx}{dy} \quad (3)

Now, we need to find 'c'. From equation (3): c=x2ydxdy(4)c = x - 2y \frac{dx}{dy} \quad (4)

Substitute the expressions for 'c' from (4) and (xc)(x-c) from (3) back into the original equation (1): y=c(xc)2y = c(x-c)^2 y=(x2ydxdy)(2ydxdy)2y = \left(x - 2y \frac{dx}{dy}\right) \left(2y \frac{dx}{dy}\right)^2

This is the differential equation for the given family of curves.