Solveeit Logo

Question

Question: $\lim_{x\to\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}}$...

limxxx+x\lim_{x\to\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}}

Answer

1

Explanation

Solution

To evaluate the limit limxxx+x\lim_{x\to\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}}, we can divide the numerator and the denominator by x\sqrt{x}.

The expression becomes:

limxxxx+xx\lim_{x\to\infty} \frac{\frac{\sqrt{x}}{\sqrt{x}}}{\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x}}}

Simplify the numerator and the denominator:

Numerator: xx=1\frac{\sqrt{x}}{\sqrt{x}} = 1.

Denominator: x+xx=x+xx=xx+xx=1+1x\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x}} = \sqrt{\frac{x+\sqrt{x}}{x}} = \sqrt{\frac{x}{x} + \frac{\sqrt{x}}{x}} = \sqrt{1 + \frac{1}{\sqrt{x}}}.

So the limit expression is:

limx11+1x \lim_{x\to\infty} \frac{1}{\sqrt{1 + \frac{1}{\sqrt{x}}}}

Now, we evaluate the limit as xx \to \infty.

As xx \to \infty, x\sqrt{x} \to \infty.

As x\sqrt{x} \to \infty, 1x0\frac{1}{\sqrt{x}} \to 0.

Therefore, the term inside the square root in the denominator approaches 1+0=11+0 = 1.

The square root of this term approaches 1=1\sqrt{1} = 1.

So, the limit is:

11+0=11=11=1\frac{1}{\sqrt{1+0}} = \frac{1}{\sqrt{1}} = \frac{1}{1} = 1