Solveeit Logo

Question

Question: $\lim_{n\to\infty} \frac{\int_{1/(n+1)}^{1/n} \tan^{-1}(nx)dx}{\int_{1/(n+1)}^{1/n} \sin^{-1}(nx)dx}...

limn1/(n+1)1/ntan1(nx)dx1/(n+1)1/nsin1(nx)dx\lim_{n\to\infty} \frac{\int_{1/(n+1)}^{1/n} \tan^{-1}(nx)dx}{\int_{1/(n+1)}^{1/n} \sin^{-1}(nx)dx} is equal to

A

1

B

2

C

1/2

D

1/4

Answer

12\frac{1}{2}

Explanation

Solution

Let the given limit be LL. L=limn1/(n+1)1/ntan1(nx)dx1/(n+1)1/nsin1(nx)dxL = \lim_{n\to\infty} \frac{\int_{1/(n+1)}^{1/n} \tan^{-1}(nx)dx}{\int_{1/(n+1)}^{1/n} \sin^{-1}(nx)dx} We use the substitution u=nxu = nx, so du=ndxdu = n \, dx, which means dx=dundx = \frac{du}{n}. When x=1n+1x = \frac{1}{n+1}, u=nn+1u = \frac{n}{n+1}. When x=1nx = \frac{1}{n}, u=1u = 1.

The integrals become: 1/(n+1)1/ntan1(nx)dx=n/(n+1)1tan1(u)dun=1nn/(n+1)1tan1(u)du\int_{1/(n+1)}^{1/n} \tan^{-1}(nx)dx = \int_{n/(n+1)}^{1} \tan^{-1}(u) \frac{du}{n} = \frac{1}{n} \int_{n/(n+1)}^{1} \tan^{-1}(u) du 1/(n+1)1/nsin1(nx)dx=n/(n+1)1sin1(u)dun=1nn/(n+1)1sin1(u)du\int_{1/(n+1)}^{1/n} \sin^{-1}(nx)dx = \int_{n/(n+1)}^{1} \sin^{-1}(u) \frac{du}{n} = \frac{1}{n} \int_{n/(n+1)}^{1} \sin^{-1}(u) du

The limit expression simplifies to: L=limn1nn/(n+1)1tan1(u)du1nn/(n+1)1sin1(u)du=limnn/(n+1)1tan1(u)dun/(n+1)1sin1(u)duL = \lim_{n\to\infty} \frac{\frac{1}{n} \int_{n/(n+1)}^{1} \tan^{-1}(u) du}{\frac{1}{n} \int_{n/(n+1)}^{1} \sin^{-1}(u) du} = \lim_{n\to\infty} \frac{\int_{n/(n+1)}^{1} \tan^{-1}(u) du}{\int_{n/(n+1)}^{1} \sin^{-1}(u) du} Let an=nn+1a_n = \frac{n}{n+1}. As nn \to \infty, an1a_n \to 1. The limit is of the form 00\frac{0}{0}. L=liman1an1tan1(u)duan1sin1(u)duL = \lim_{a_n \to 1^-} \frac{\int_{a_n}^{1} \tan^{-1}(u) du}{\int_{a_n}^{1} \sin^{-1}(u) du} Applying L'Hopital's Rule: L=liman1ddanan1tan1(u)duddanan1sin1(u)du=liman1tan1(an)sin1(an)=liman1tan1(an)sin1(an)L = \lim_{a_n \to 1^-} \frac{\frac{d}{da_n}\int_{a_n}^{1} \tan^{-1}(u) du}{\frac{d}{da_n}\int_{a_n}^{1} \sin^{-1}(u) du} = \lim_{a_n \to 1^-} \frac{-\tan^{-1}(a_n)}{-\sin^{-1}(a_n)} = \lim_{a_n \to 1^-} \frac{\tan^{-1}(a_n)}{\sin^{-1}(a_n)} Substituting an=1a_n = 1: L=tan1(1)sin1(1)=π/4π/2=12L = \frac{\tan^{-1}(1)}{\sin^{-1}(1)} = \frac{\pi/4}{\pi/2} = \frac{1}{2}