Solveeit Logo

Question

Question: Let $D_n = [a_{ij}]_{n \times n}$ be a $(n \times n)$ determinant with the following conditions $a_...

Let Dn=[aij]n×nD_n = [a_{ij}]_{n \times n} be a (n×n)(n \times n) determinant with the following conditions

aij={4i=j2ij=10otherwisea_{ij} = \begin{cases} 4 & i=j \\ 2 & |i-j| = 1 \\ 0 & \text{otherwise} \end{cases}

Then,

A

D3=32D_3 = 32

B

D6+D4=2D5D_6 + D_4 = 2D_5

C

D6+4D4=4D5D_6 + 4D_4 = 4D_5

D

D12+D10=D11D_{12} + D_{10} = D_{11}

Answer

A, C

Explanation

Solution

Here's how to solve this problem:

  1. Calculate initial determinants:

    • D1=4D_1 = 4
    • D2=4224=164=12D_2 = \begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix} = 16 - 4 = 12
    • D3=420242024=4(164)2(8)=4816=32D_3 = \begin{vmatrix} 4 & 2 & 0 \\ 2 & 4 & 2 \\ 0 & 2 & 4 \end{vmatrix} = 4(16-4) - 2(8) = 48 - 16 = 32

    This directly verifies option (A).

  2. Derive the recurrence relation:

    Expand DnD_n along the first row. The cofactor of a11a_{11} is Dn1D_{n-1}. The cofactor of a12a_{12} is 2Dn2-2D_{n-2}. This leads to the recurrence:

    Dn=4Dn14Dn2D_n = 4D_{n-1} - 4D_{n-2}

  3. Verify options using the recurrence relation:

    • Option (B): D6+D4=2D5D_6 + D_4 = 2D_5. Substitute D6=4D54D4D_6 = 4D_5 - 4D_4. This simplifies to 4D54D4+D4=2D54D_5 - 4D_4 + D_4 = 2D_5, which further simplifies to 2D5=3D42D_5 = 3D_4. This is false.

    • Option (C): D6+4D4=4D5D_6 + 4D_4 = 4D_5. Substitute D6=4D54D4D_6 = 4D_5 - 4D_4. This simplifies to 4D54D4+4D4=4D54D_5 - 4D_4 + 4D_4 = 4D_5, which simplifies to 4D5=4D54D_5 = 4D_5. This is true.

    • Option (D): D12+D10=D11D_{12} + D_{10} = D_{11}. Substitute D12=4D114D10D_{12} = 4D_{11} - 4D_{10}. This simplifies to 4D114D10+D10=D114D_{11} - 4D_{10} + D_{10} = D_{11}, which further simplifies to 3D11=3D103D_{11} = 3D_{10} or D11=D10D_{11} = D_{10}. This is false.

Therefore, the correct options are (A) and (C).