Solveeit Logo

Question

Question: Let a₁,a₂,a₃ ∈ R-{0} and a₁ + a₂cos2x + a₃sin²x = 0 ∀ x ∈ R, then-...

Let a₁,a₂,a₃ ∈ R-{0} and a₁ + a₂cos2x + a₃sin²x = 0 ∀ x ∈ R, then-

A

vectors a\overrightarrow{a} = a₁i^\hat{i} + a₂j^\hat{j} + a₃k^\hat{k} and b\overrightarrow{b} = 4i^\hat{i} + 2j^\hat{j} + k^\hat{k} are perpendicular

B

vectors a\overrightarrow{a} = a₁i^\hat{i} + a₂j^\hat{j} + a₃k^\hat{k} and b\overrightarrow{b} = i^\hat{i} + j^\hat{j} + 2k^\hat{k} are parallel to each other

C

if vector a\overrightarrow{a} = a₁i^\hat{i} + a₂j^\hat{j} + a₃k^\hat{k} is of length 6\sqrt{6}, then one of ordered triplet (a₁,a₂,a₃) = (1,-1,-2)

D

if 2a₁ + 3a₂ + 6a₃ = 26, then |a₁i^\hat{i} + a₂j^\hat{j} + a₃k^\hat{k}| = 26\sqrt{6}

Answer

A, C, D

Explanation

Solution

The given equation is a1+a2cos(2x)+a3sin2(x)=0a_1 + a_2 \cos(2x) + a_3 \sin^2(x) = 0 for all xRx \in R, where a1,a2,a3R{0}a_1, a_2, a_3 \in R - \{0\}.

We use the trigonometric identity sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}. Substituting this into the equation, we get:

a1+a2cos(2x)+a3(1cos(2x)2)=0a_1 + a_2 \cos(2x) + a_3 \left(\frac{1 - \cos(2x)}{2}\right) = 0

a1+a2cos(2x)+a32a32cos(2x)=0a_1 + a_2 \cos(2x) + \frac{a_3}{2} - \frac{a_3}{2} \cos(2x) = 0

Rearranging the terms, we group the constant terms and the terms involving cos(2x)\cos(2x):

(a1+a32)+(a2a32)cos(2x)=0\left(a_1 + \frac{a_3}{2}\right) + \left(a_2 - \frac{a_3}{2}\right) \cos(2x) = 0

This equation must hold for all xRx \in R. Since cos(2x)\cos(2x) is not a constant function, for this linear combination of a constant and cos(2x)\cos(2x) to be identically zero, the coefficients of the constant term and cos(2x)\cos(2x) must both be zero.

So, we have two equations:

  1. a1+a32=0    2a1+a3=0    a3=2a1a_1 + \frac{a_3}{2} = 0 \implies 2a_1 + a_3 = 0 \implies a_3 = -2a_1

  2. a2a32=0    2a2a3=0    a3=2a2a_2 - \frac{a_3}{2} = 0 \implies 2a_2 - a_3 = 0 \implies a_3 = 2a_2

From these two equations, we have a3=2a1a_3 = -2a_1 and a3=2a2a_3 = 2a_2. Equating the expressions for a3a_3, we get 2a1=2a2-2a_1 = 2a_2, which simplifies to a1=a2a_1 = -a_2, or a2=a1a_2 = -a_1. Then a3=2a2=2(a1)=2a1a_3 = 2a_2 = 2(-a_1) = -2a_1.

So the relationship between a1,a2,a3a_1, a_2, a_3 is a2=a1a_2 = -a_1 and a3=2a1a_3 = -2a_1. Since a1R{0}a_1 \in R - \{0\}, we can express a2a_2 and a3a_3 in terms of a1a_1. Let a1=λa_1 = \lambda, where λR{0}\lambda \in R - \{0\}. Then a2=λa_2 = -\lambda and a3=2λa_3 = -2\lambda. The ordered triplet (a1,a2,a3)(a_1, a_2, a_3) is (λ,λ,2λ)=λ(1,1,2)(\lambda, -\lambda, -2\lambda) = \lambda(1, -1, -2). This means (a1,a2,a3)(a_1, a_2, a_3) is proportional to (1,1,2)(1, -1, -2). The vector a=a1i^+a2j^+a3k^=λi^λj^2λk^=λ(i^j^2k^)\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} = \lambda\hat{i} - \lambda\hat{j} - 2\lambda\hat{k} = \lambda(\hat{i} - \hat{j} - 2\hat{k}).

Now let's check the given options:

(A) vectors a=a1i^+a2j^+a3k^\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} and b=4i^+2j^+k^\overrightarrow{b} = 4\hat{i} + 2\hat{j} + \hat{k} are perpendicular. The dot product ab=(a1)(4)+(a2)(2)+(a3)(1)=4a1+2a2+a3\overrightarrow{a} \cdot \overrightarrow{b} = (a_1)(4) + (a_2)(2) + (a_3)(1) = 4a_1 + 2a_2 + a_3. Substitute a2=a1a_2 = -a_1 and a3=2a1a_3 = -2a_1: 4a1+2(a1)+(2a1)=4a12a12a1=04a_1 + 2(-a_1) + (-2a_1) = 4a_1 - 2a_1 - 2a_1 = 0. Since the dot product is zero, the vectors are perpendicular. Option (A) is correct.

(B) vectors a=a1i^+a2j^+a3k^\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} and b=i^+j^+2k^\overrightarrow{b} = \hat{i} + \hat{j} + 2\hat{k} are parallel to each other. a=λ(i^j^2k^)\overrightarrow{a} = \lambda(\hat{i} - \hat{j} - 2\hat{k}). For a\overrightarrow{a} and b\overrightarrow{b} to be parallel, a\overrightarrow{a} must be a scalar multiple of b\overrightarrow{b}. λ(i^j^2k^)=c(i^+j^+2k^)\lambda(\hat{i} - \hat{j} - 2\hat{k}) = c(\hat{i} + \hat{j} + 2\hat{k}) for some scalar cc. Comparing components: λ=c\lambda = c, λ=c-\lambda = c, 2λ=2c-2\lambda = 2c. From λ=c\lambda = c and λ=c-\lambda = c, we get λ=λ\lambda = -\lambda, so 2λ=02\lambda = 0, which implies λ=0\lambda = 0. However, a1=λ0a_1 = \lambda \neq 0. Thus, a\overrightarrow{a} and b\overrightarrow{b} are not parallel. Option (B) is incorrect.

(C) if vector a=a1i^+a2j^+a3k^\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} is of length 6\sqrt{6}, then one of ordered triplet (a1,a2,a3)=(1,1,2)(a_1, a_2, a_3) = (1, -1, -2). The length of a\overrightarrow{a} is a=a12+a22+a32|\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}. Substitute a1=λa_1 = \lambda, a2=λa_2 = -\lambda, a3=2λa_3 = -2\lambda: a=λ2+(λ)2+(2λ)2=λ2+λ2+4λ2=6λ2=λ6|\overrightarrow{a}| = \sqrt{\lambda^2 + (-\lambda)^2 + (-2\lambda)^2} = \sqrt{\lambda^2 + \lambda^2 + 4\lambda^2} = \sqrt{6\lambda^2} = |\lambda|\sqrt{6}. Given a=6|\overrightarrow{a}| = \sqrt{6}, we have λ6=6|\lambda|\sqrt{6} = \sqrt{6}, which implies λ=1|\lambda| = 1. So λ=1\lambda = 1 or λ=1\lambda = -1. If λ=1\lambda = 1, (a1,a2,a3)=(1,1,2)(a_1, a_2, a_3) = (1, -1, -2). If λ=1\lambda = -1, (a1,a2,a3)=(1,1,2)(a_1, a_2, a_3) = (-1, 1, 2). The option states that one of the ordered triplet is (1,1,2)(1, -1, -2). This is true when λ=1\lambda = 1. Option (C) is correct.

(D) if 2a1+3a2+6a3=262a_1 + 3a_2 + 6a_3 = 26, then a1i^+a2j^+a3k^=26|a_1\hat{i} + a_2\hat{j} + a_3\hat{k}| = 2\sqrt{6}. Substitute a1=λa_1 = \lambda, a2=λa_2 = -\lambda, a3=2λa_3 = -2\lambda into the equation 2a1+3a2+6a3=262a_1 + 3a_2 + 6a_3 = 26: 2(λ)+3(λ)+6(2λ)=262(\lambda) + 3(-\lambda) + 6(-2\lambda) = 26. 2λ3λ12λ=262\lambda - 3\lambda - 12\lambda = 26. 13λ=26-13\lambda = 26. λ=2613=2\lambda = \frac{26}{-13} = -2. Now calculate the magnitude of a\overrightarrow{a}: a=λ6|\overrightarrow{a}| = |\lambda|\sqrt{6}. With λ=2\lambda = -2, λ=2=2|\lambda| = |-2| = 2. a=26|\overrightarrow{a}| = 2\sqrt{6}. The option states that a1i^+a2j^+a3k^=26|a_1\hat{i} + a_2\hat{j} + a_3\hat{k}| = 2\sqrt{6}. This is true. Option (D) is correct.

All options (A), (C), and (D) are correct.