Solveeit Logo

Question

Question: 12 If $\tan x=\frac{2t}{1-t^2}$ and $\sin y=\frac{2t}{1+t^2}$, $\frac{dy}{dx}$...

12 If tanx=2t1t2\tan x=\frac{2t}{1-t^2} and siny=2t1+t2\sin y=\frac{2t}{1+t^2}, dydx\frac{dy}{dx}

Answer

1

Explanation

Solution

Explanation:
Using the double angle identities, note that

tanx=2t1t2=tan(2arctant)x=2arctant,\tan x=\frac{2t}{1-t^2}=\tan(2\arctan t) \quad\Rightarrow\quad x=2\arctan t,

and

siny=2t1+t2=sin(2arctant)y=2arctant.\sin y =\frac{2t}{1+t^2}=\sin(2\arctan t) \quad\Rightarrow\quad y=2\arctan t.

Thus, y=xy=x and hence

dydx=1.\frac{dy}{dx}=1.

Answer:
11 (Option C if presented among multiple choices)