Question
Question: If $(4x^2+1)^n = \sum_{r=0}^{n} a_r (1+x^2)^{n-r} x^{2r}$, then the value of $\sum_{r=0}^{n} a_r$ is...
If (4x2+1)n=∑r=0nar(1+x2)n−rx2r, then the value of ∑r=0nar is

A
3n
B
4n
C
5n
D
6n
Answer
4n
Explanation
Solution
The given identity is (4x2+1)n=∑r=0nar(1+x2)n−rx2r. We can rewrite the LHS as 4x2+1=(1+x2)+3x2. So, ((1+x2)+3x2)n=∑r=0n(rn)(1+x2)n−r(3x2)r=∑r=0n(rn)3r(1+x2)n−rx2r. Comparing coefficients with the given RHS, we get ar=(rn)3r. Then, ∑r=0nar=∑r=0n(rn)3r. By the binomial theorem, this sum is (1+3)n=4n.
