Solveeit Logo

Question

Question: A point charge q is placed at a distance R from the center O of a uniformly charged hemispherical sh...

A point charge q is placed at a distance R from the center O of a uniformly charged hemispherical shell of surface charge density σ\sigma and radius R on its axis of symmetry as shown in the figure. Then the net electric force experienced by the point charge q due to the uniformly charged hemispherical shell is

A

qσ2ϵ0(21)\frac{q\sigma}{\sqrt{2}\epsilon_0}(\sqrt{2}-1)

B

qσ42ϵ0(21)\frac{q\sigma}{4\sqrt{2}\epsilon_0}(\sqrt{2}-1)

C

qσ22ϵ0(21)\frac{q\sigma}{2\sqrt{2}\epsilon_0}(\sqrt{2}-1)

D

qσ32ϵ0(21)\frac{q\sigma}{3\sqrt{2}\epsilon_0}(\sqrt{2}-1)

Answer

(3)

Explanation

Solution

To find the net electric force experienced by the point charge qq due to the uniformly charged hemispherical shell, we first need to calculate the electric field produced by the hemispherical shell at the location of the point charge.

Let the center of the hemispherical shell be at the origin O (0,0,0). Let the axis of symmetry be the x-axis. The hemispherical shell is on the positive x-axis side, meaning it extends from x=0x=0 to x=Rx=R. The point charge qq is located at (R,0,0)(-R, 0, 0).

Consider a differential ring element on the hemispherical shell. Let this ring be at an angle θ\theta with respect to the positive x-axis. The radius of this ring is r=Rsinθr = R\sin\theta. The width of the ring is RdθR d\theta. The area of this differential ring element is dA=(2πRsinθ)(Rdθ)=2πR2sinθdθdA = (2\pi R\sin\theta)(R d\theta) = 2\pi R^2 \sin\theta d\theta. The charge on this ring element is dQ=σdA=2πR2σsinθdθdQ = \sigma dA = 2\pi R^2 \sigma \sin\theta d\theta.

A point on this ring can be represented by coordinates (Rcosθ,Rsinθcosϕ,Rsinθsinϕ)(R\cos\theta, R\sin\theta\cos\phi, R\sin\theta\sin\phi). The position of the point charge is (R,0,0)(-R, 0, 0). The distance rr' from any point on the ring to the point charge qq is: r2=(Rcosθ(R))2+(Rsinθcosϕ0)2+(Rsinθsinϕ0)2r'^2 = (R\cos\theta - (-R))^2 + (R\sin\theta\cos\phi - 0)^2 + (R\sin\theta\sin\phi - 0)^2 r2=(R(1+cosθ))2+R2sin2θ(cos2ϕ+sin2ϕ)r'^2 = (R(1+\cos\theta))^2 + R^2\sin^2\theta(\cos^2\phi+\sin^2\phi) r2=R2(1+2cosθ+cos2θ)+R2sin2θr'^2 = R^2(1+2\cos\theta+\cos^2\theta) + R^2\sin^2\theta r2=R2(1+2cosθ+cos2θ+sin2θ)r'^2 = R^2(1+2\cos\theta+\cos^2\theta+\sin^2\theta) r2=R2(2+2cosθ)=2R2(1+cosθ)r'^2 = R^2(2+2\cos\theta) = 2R^2(1+\cos\theta). Using the identity 1+cosθ=2cos2(θ/2)1+\cos\theta = 2\cos^2(\theta/2), we get: r2=2R2(2cos2(θ/2))=4R2cos2(θ/2)r'^2 = 2R^2(2\cos^2(\theta/2)) = 4R^2\cos^2(\theta/2). So, r=2Rcos(θ/2)r' = 2R\cos(\theta/2). (Since for the hemisphere, θ\theta ranges from 00 to π/2\pi/2, θ/2\theta/2 ranges from 00 to π/4\pi/4, and cos(θ/2)\cos(\theta/2) is positive).

The electric field dEd\vec{E} due to this ring element at the point charge qq will have components perpendicular to the x-axis that cancel out due to symmetry when integrated over the entire ring. Only the x-component of the electric field will contribute to the net field.

The x-component of the electric field dExdE_x due to a point charge dQdQ on the ring is given by dEx=14πϵ0dQr2cosαdE_x = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r'^2} \cos\alpha, where α\alpha is the angle between the vector from dQdQ to qq and the positive x-axis. The vector from a point on the ring (Rcosθ,Rsinθ,0)(R\cos\theta, R\sin\theta, 0) to q(R,0,0)q(-R, 0, 0) is (RRcosθ,Rsinθ,0)(-R-R\cos\theta, -R\sin\theta, 0). The x-component of this vector is R(1+cosθ)-R(1+\cos\theta). So, cosα=R(1+cosθ)r=R(2cos2(θ/2))2Rcos(θ/2)=cos(θ/2)\cos\alpha = \frac{-R(1+\cos\theta)}{r'} = \frac{-R(2\cos^2(\theta/2))}{2R\cos(\theta/2)} = -\cos(\theta/2). The negative sign indicates that the electric field is directed towards the negative x-axis (towards the hemisphere).

Now, substitute dQdQ, r2r'^2, and cosα\cos\alpha into the expression for dExdE_x: dEx=14πϵ02πR2σsinθdθ4R2cos2(θ/2)(cos(θ/2))dE_x = \frac{1}{4\pi\epsilon_0} \frac{2\pi R^2 \sigma \sin\theta d\theta}{4R^2\cos^2(\theta/2)} (-\cos(\theta/2)) dEx=14πϵ02πR2σsinθdθ4R2cos(θ/2)dE_x = -\frac{1}{4\pi\epsilon_0} \frac{2\pi R^2 \sigma \sin\theta d\theta}{4R^2\cos(\theta/2)} dEx=σ8ϵ0sinθcos(θ/2)dθdE_x = -\frac{\sigma}{8\epsilon_0} \frac{\sin\theta}{\cos(\theta/2)} d\theta. Using the identity sinθ=2sin(θ/2)cos(θ/2)\sin\theta = 2\sin(\theta/2)\cos(\theta/2): dEx=σ8ϵ02sin(θ/2)cos(θ/2)cos(θ/2)dθdE_x = -\frac{\sigma}{8\epsilon_0} \frac{2\sin(\theta/2)\cos(\theta/2)}{\cos(\theta/2)} d\theta dEx=σ4ϵ0sin(θ/2)dθdE_x = -\frac{\sigma}{4\epsilon_0} \sin(\theta/2) d\theta.

To find the total electric field ExE_x, we integrate dExdE_x over the entire hemisphere. The angle θ\theta ranges from 00 (the tip of the hemisphere, x=Rx=R) to π/2\pi/2 (the base of the hemisphere, x=0x=0). Ex=0π/2σ4ϵ0sin(θ/2)dθE_x = \int_0^{\pi/2} -\frac{\sigma}{4\epsilon_0} \sin(\theta/2) d\theta. Let u=θ/2u = \theta/2, so du=12dθdθ=2dudu = \frac{1}{2}d\theta \Rightarrow d\theta = 2du. When θ=0\theta=0, u=0u=0. When θ=π/2\theta=\pi/2, u=π/4u=\pi/4. Ex=0π/4σ4ϵ0sin(u)(2du)E_x = \int_0^{\pi/4} -\frac{\sigma}{4\epsilon_0} \sin(u) (2du) Ex=σ2ϵ00π/4sin(u)duE_x = -\frac{\sigma}{2\epsilon_0} \int_0^{\pi/4} \sin(u) du Ex=σ2ϵ0[cos(u)]0π/4E_x = -\frac{\sigma}{2\epsilon_0} [-\cos(u)]_0^{\pi/4} Ex=σ2ϵ0[cos(u)]0π/4E_x = \frac{\sigma}{2\epsilon_0} [\cos(u)]_0^{\pi/4} Ex=σ2ϵ0(cos(π/4)cos(0))E_x = \frac{\sigma}{2\epsilon_0} (\cos(\pi/4) - \cos(0)) Ex=σ2ϵ0(121)E_x = \frac{\sigma}{2\epsilon_0} \left(\frac{1}{\sqrt{2}} - 1\right) Ex=σ2ϵ0(112)=σ2ϵ0(212)E_x = -\frac{\sigma}{2\epsilon_0} \left(1 - \frac{1}{\sqrt{2}}\right) = -\frac{\sigma}{2\epsilon_0} \left(\frac{\sqrt{2}-1}{\sqrt{2}}\right) Ex=σ22ϵ0(21)E_x = -\frac{\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1).

The net electric force experienced by the point charge qq is F=qExF = qE_x. F=q(σ22ϵ0(21))F = q \left(-\frac{\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1)\right). The magnitude of the force is F=qσ22ϵ0(21)F = \frac{q\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1).

Comparing this result with the given options: (1) qσ2ϵ0(21)\frac{q\sigma}{\sqrt{2}\epsilon_0}(\sqrt{2}-1) (2) qσ42ϵ0(21)\frac{q\sigma}{4\sqrt{2}\epsilon_0}(\sqrt{2}-1) (3) qσ22ϵ0(21)\frac{q\sigma}{2\sqrt{2}\epsilon_0}(\sqrt{2}-1) (4) qσ32ϵ0(21)\frac{q\sigma}{3\sqrt{2}\epsilon_0}(\sqrt{2}-1)

The calculated magnitude matches option (3).

The final answer is (3)\boxed{\text{(3)}}

Solution:

  1. Define Coordinate System and Elements: Place the center of the hemispherical shell at the origin (0,0,0). The axis of symmetry is the x-axis, with the hemisphere extending for x0x \ge 0. The point charge qq is at (R,0,0)(-R, 0, 0). Consider a differential ring element on the hemisphere at angle θ\theta from the positive x-axis.

    • Area of ring dA=2πR2sinθdθdA = 2\pi R^2 \sin\theta d\theta.
    • Charge on ring dQ=σdA=2πR2σsinθdθdQ = \sigma dA = 2\pi R^2 \sigma \sin\theta d\theta.
  2. Distance and Angle: The distance rr' from any point on the ring to the point charge qq is r=2Rcos(θ/2)r' = 2R\cos(\theta/2). The angle α\alpha between the vector from dQdQ to qq and the positive x-axis is such that cosα=cos(θ/2)\cos\alpha = -\cos(\theta/2).

  3. Electric Field Contribution: By symmetry, only the x-component of the electric field contributes.

    dEx=14πϵ0dQr2cosαdE_x = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r'^2} \cos\alpha

    Substitute dQdQ, rr', and cosα\cos\alpha:

    dEx=14πϵ02πR2σsinθdθ(2Rcos(θ/2))2(cos(θ/2))dE_x = \frac{1}{4\pi\epsilon_0} \frac{2\pi R^2 \sigma \sin\theta d\theta}{(2R\cos(\theta/2))^2} (-\cos(\theta/2))

    dEx=σ4ϵ0sin(θ/2)dθdE_x = -\frac{\sigma}{4\epsilon_0} \sin(\theta/2) d\theta.

  4. Integration: Integrate dExdE_x from θ=0\theta=0 to θ=π/2\theta=\pi/2 (for the hemisphere):

    Ex=0π/2σ4ϵ0sin(θ/2)dθE_x = \int_0^{\pi/2} -\frac{\sigma}{4\epsilon_0} \sin(\theta/2) d\theta

    Let u=θ/2u = \theta/2, du=(1/2)dθdu = (1/2)d\theta. Limits: 0π/40 \to \pi/4.

    Ex=σ2ϵ00π/4sin(u)du=σ2ϵ0[cos(u)]0π/4E_x = -\frac{\sigma}{2\epsilon_0} \int_0^{\pi/4} \sin(u) du = -\frac{\sigma}{2\epsilon_0} [-\cos(u)]_0^{\pi/4}

    Ex=σ2ϵ0(cos(π/4)cos(0))=σ2ϵ0(121)E_x = \frac{\sigma}{2\epsilon_0} (\cos(\pi/4) - \cos(0)) = \frac{\sigma}{2\epsilon_0} \left(\frac{1}{\sqrt{2}} - 1\right)

    Ex=σ22ϵ0(21)E_x = -\frac{\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1).

  5. Net Force: The net electric force on charge qq is F=qExF = qE_x.

    F=q(σ22ϵ0(21))F = q \left(-\frac{\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1)\right).

    The magnitude of the force is F=qσ22ϵ0(21)F = \frac{q\sigma}{2\sqrt{2}\epsilon_0} (\sqrt{2}-1).