Solveeit Logo

Question

Question: Two particles, 1 and 2, move with constant velocities $v_1$ and $v_2$ along two mutually perpendicul...

Two particles, 1 and 2, move with constant velocities v1v_1 and v2v_2 along two mutually perpendicular straight lines toward the intersection point OO. At the moment t=0t = 0 the particles were located at the distances l1l_1 and l2l_2 from the point OO. How soon will the distance between the particles become the smallest? What is it equal to?

Answer
  • Time when distance is minimum: tmin=v1l1+v2l2v12+v22t_{\min}=\frac{v_1l_1+v_2l_2}{v_1^2+v_2^2}
  • Minimum distance between the particles: dmin=l1v2v1l2v12+v22d_{\min}=\frac{|l_1v_2-v_1l_2|}{\sqrt{v_1^2+v_2^2}}
Explanation

Solution

Place the intersection point OO at the origin. Assume particle 1 moves along the xx-axis and particle 2 along the yy-axis toward OO. At t=0t=0, their positions are:

P1(0)=(l1,0),P2(0)=(0,l2)P_1(0)=(l_1,0),\quad P_2(0)=(0,l_2)

Since the particles are moving toward OO with speeds v1v_1 and v2v_2 respectively, their positions at time tt are:

P1(t)=(l1v1t,0),P2(t)=(0,l2v2t)P_1(t)=(l_1-v_1t,\,0),\quad P_2(t)=(0,\,l_2-v_2t)

The distance between them is:

d(t)=(l1v1t)2+(l2v2t)2d(t)=\sqrt{(l_1-v_1t)^2+(l_2-v_2t)^2}

To find the time when d(t)d(t) is minimum, minimize the square of the distance:

D(t)=(l1v1t)2+(l2v2t)2D(t)= (l_1-v_1t)^2+(l_2-v_2t)^2

Differentiate D(t)D(t) with respect to tt and set to zero:

dDdt=2v1(l1v1t)2v2(l2v2t)=0\frac{dD}{dt}=-2v_1(l_1-v_1t)-2v_2(l_2-v_2t)=0 v1(l1v1t)+v2(l2v2t)=0\Rightarrow v_1(l_1-v_1t)+v_2(l_2-v_2t)=0 v1l1+v2l2=t(v12+v22)\Rightarrow v_1l_1+v_2l_2=t(v_1^2+v_2^2)

Thus, the time of minimum distance is:

tmin=v1l1+v2l2v12+v22t_{\min}=\frac{v_1l_1+v_2l_2}{v_1^2+v_2^2}

Now, substitute tmint_{\min} into the expressions for the positions:

l1v1tmin=l1v1(v1l1+v2l2)v12+v22=l1(v12+v22)v12l1v1v2l2v12+v22=v2(l1v2v1l2)v12+v22l_1-v_1t_{\min} = l_1-\frac{v_1(v_1l_1+v_2l_2)}{v_1^2+v_2^2} = \frac{l_1(v_1^2+v_2^2)-v_1^2l_1-v_1v_2l_2}{v_1^2+v_2^2} = \frac{v_2(l_1v_2-v_1l_2)}{v_1^2+v_2^2} l2v2tmin=v1(l2v1v2l1)v12+v22l_2-v_2t_{\min} = \frac{v_1(l_2v_1-v_2l_1)}{v_1^2+v_2^2}

Hence, the minimum distance is:

dmin=(v2(l1v2v1l2)v12+v22)2+(v1(l2v1v2l1)v12+v22)2d_{\min}=\sqrt{\left(\frac{v_2(l_1v_2-v_1l_2)}{v_1^2+v_2^2}\right)^2+\left(\frac{v_1(l_2v_1-v_2l_1)}{v_1^2+v_2^2}\right)^2}

Notice that (l1v2v1l2)2(l_1v_2-v_1l_2)^2 appears in both terms:

dmin=l1v2v1l2v12+v22v22+v12=l1v2v1l2v12+v22d_{\min} = \frac{|l_1v_2-v_1l_2|}{v_1^2+v_2^2}\sqrt{v_2^2+v_1^2} = \frac{|l_1v_2-v_1l_2|}{\sqrt{v_1^2+v_2^2}}