Solveeit Logo

Question

Question: If $\bar{a}$ = î - 2ĵ + 3k and $\bar{b}$ = 2î + 3ĵ − k are two vectors, then the angle between the v...

If aˉ\bar{a} = î - 2ĵ + 3k and bˉ\bar{b} = 2î + 3ĵ − k are two vectors, then the angle between the vectors 3aˉ\bar{a} + 5bˉ\bar{b} and 5aˉ\bar{a} + 3bˉ\bar{b} is

A

cos1(1019)\cos^{-1}(\frac{10}{19})

B

cos1(1119)\cos^{-1}(\frac{11}{19})

C

cos1(1319)\cos^{-1}(\frac{13}{19})

D

cos1(1419)\cos^{-1}(\frac{14}{19})

Answer

cos1(1319)\cos^{-1}(\frac{13}{19})

Explanation

Solution

Let

a=1,2,3,b=2,3,1\mathbf{a} = \langle 1, -2, 3 \rangle, \quad \mathbf{b} = \langle 2, 3, -1 \rangle.

Compute

u=3a+5b=31,2,3+52,3,1=3+10,6+15,95=13,9,4\mathbf{u} = 3\mathbf{a} + 5\mathbf{b} = 3\langle 1,-2,3 \rangle + 5\langle 2,3,-1 \rangle = \langle 3+10,\,-6+15,\,9-5 \rangle = \langle 13, 9, 4 \rangle,

v=5a+3b=51,2,3+32,3,1=5+6,10+9,153=11,1,12\mathbf{v} = 5\mathbf{a} + 3\mathbf{b} = 5\langle 1,-2,3 \rangle + 3\langle 2,3,-1 \rangle = \langle 5+6,\,-10+9,\,15-3 \rangle = \langle 11, -1, 12 \rangle.

Now, find the dot product:

uv=(13)(11)+(9)(1)+(4)(12)=1439+48=182\mathbf{u}\cdot\mathbf{v} = (13)(11) + (9)(-1) + (4)(12) = 143 - 9 + 48 = 182.

Determine the magnitudes:

u=132+92+42=169+81+16=266|\mathbf{u}|=\sqrt{13^2+9^2+4^2}=\sqrt{169+81+16}=\sqrt{266},

v=112+(1)2+122=121+1+144=266|\mathbf{v}|=\sqrt{11^2+(-1)^2+12^2}=\sqrt{121+1+144}=\sqrt{266}.

Thus, the cosine of the angle θ\theta between u\mathbf{u} and v\mathbf{v} is

cosθ=uvuv=182266=91133=1319\cos \theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{182}{266} = \frac{91}{133} = \frac{13}{19}.

Hence,

θ=cos1(1319)\theta = \cos^{-1}\left(\frac{13}{19}\right).