Solveeit Logo

Question

Question: Two waves $Y_1 = asin\omega t$ and $Y_2 =asin(\omega t+\delta)$ are producing interference, then res...

Two waves Y1=asinωtY_1 = asin\omega t and Y2=asin(ωt+δ)Y_2 =asin(\omega t+\delta) are producing interference, then resultant intensity is proportional to -

A

acos2δ/2acos^2 \delta/2

B

a2cosδ/2a^2cos \delta/2

C

a2cosδa^2cos \delta

D

a2cos2δ/2a^2cos^2 \delta/2

Answer

a2cos2δ/2a^2cos^2 \delta/2

Explanation

Solution

The two waves are given by Y1=asin(ωt)Y_1 = a \sin(\omega t) and Y2=asin(ωt+δ)Y_2 = a \sin(\omega t + \delta). The resultant displacement YresY_{res} is the sum of the individual displacements: Yres=Y1+Y2=asin(ωt)+asin(ωt+δ)Y_{res} = Y_1 + Y_2 = a \sin(\omega t) + a \sin(\omega t + \delta) Using the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right): Yres=a[2sin(ωt+ωt+δ2)cos(ωt(ωt+δ)2)]Y_{res} = a \left[ 2 \sin\left(\frac{\omega t + \omega t + \delta}{2}\right) \cos\left(\frac{\omega t - (\omega t + \delta)}{2}\right) \right] Yres=2asin(ωt+δ2)cos(δ2)Y_{res} = 2a \sin\left(\omega t + \frac{\delta}{2}\right) \cos\left(-\frac{\delta}{2}\right) Since cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta): Yres=2acos(δ2)sin(ωt+δ2)Y_{res} = 2a \cos\left(\frac{\delta}{2}\right) \sin\left(\omega t + \frac{\delta}{2}\right) The resultant amplitude AresA_{res} is the coefficient of the sine term: Ares=2acos(δ2)A_{res} = 2a \cos\left(\frac{\delta}{2}\right) The intensity (II) of a wave is directly proportional to the square of its amplitude (AA): IA2I \propto A^2 Therefore, the resultant intensity IresI_{res} is proportional to the square of the resultant amplitude AresA_{res}: IresAres2I_{res} \propto A_{res}^2 Ires(2acos(δ2))2I_{res} \propto \left(2a \cos\left(\frac{\delta}{2}\right)\right)^2 Ires4a2cos2(δ2)I_{res} \propto 4a^2 \cos^2\left(\frac{\delta}{2}\right) Thus, the resultant intensity is proportional to a2cos2(δ2)a^2 \cos^2\left(\frac{\delta}{2}\right).