Question
Question: The sum $\frac{C_1}{C_0}+\frac{2C_2}{C_1}+\frac{3C_3}{C_2}+\dots+\frac{nC_n}{C_{n-1}}$ equals...
The sum C0C1+C12C2+C23C3+⋯+Cn−1nCn equals

Answer
2n(n+1)
Explanation
Solution
The given sum is S=C0C1+C12C2+C23C3+⋯+Cn−1nCn. In summation notation, this is S=∑k=1nCk−1kCk.
Using the definition of binomial coefficients, Ck=(kn), the ratio of consecutive coefficients is: Ck−1Ck=(k−1n)(kn)=(k−1)!(n−k+1)!n!k!(n−k)!n! Ck−1Ck=k!(n−k)!n!×n!(k−1)!(n−k+1)!=k!(k−1)!×(n−k)!(n−k+1)! Ck−1Ck=k1×(n−k+1)=kn−k+1
The k-th term of the sum is Ck−1kCk=k×(kn−k+1)=n−k+1.
So, the sum becomes: S=∑k=1n(n−k+1)
Expanding this sum: For k=1: n−1+1=n For k=2: n−2+1=n−1 For k=3: n−3+1=n−2 ... For k=n: n−n+1=1
The sum is S=n+(n−1)+(n−2)+⋯+1. This is the sum of the first n natural numbers, which is given by the formula 2n(n+1).
Therefore, S=2n(n+1).