Solveeit Logo

Question

Question: $\lim_{x \to 2} \frac{3^x + 3^{3-x}-12}{3^{-x/2}-3^{1-x}}$ is equal to \_\_\_\_....

limx23x+33x123x/231x\lim_{x \to 2} \frac{3^x + 3^{3-x}-12}{3^{-x/2}-3^{1-x}} is equal to ____.

Answer

36

Explanation

Solution

The problem asks us to evaluate the limit: limx23x+33x123x/231x\lim_{x \to 2} \frac{3^x + 3^{3-x}-12}{3^{-x/2}-3^{1-x}}

Step 1: Check the form of the limit. Substitute x=2x=2 into the expression: Numerator: 32+33212=32+3112=9+312=1212=03^2 + 3^{3-2} - 12 = 3^2 + 3^1 - 12 = 9 + 3 - 12 = 12 - 12 = 0. Denominator: 32/2312=3131=1313=03^{-2/2} - 3^{1-2} = 3^{-1} - 3^{-1} = \frac{1}{3} - \frac{1}{3} = 0. Since the limit is of the 00\frac{0}{0} indeterminate form, we can proceed with algebraic manipulation or L'Hopital's rule.

Step 2: Use substitution to simplify the expression. Let y=3xy = 3^x. As x2x \to 2, y32=9y \to 3^2 = 9. Now, express the terms in the limit in terms of yy:

  • 3x=y3^x = y
  • 33x=333x=273x=27y3^{3-x} = 3^3 \cdot 3^{-x} = \frac{27}{3^x} = \frac{27}{y}
  • 3x/2=(3x)1/2=y1/2=1y3^{-x/2} = (3^x)^{-1/2} = y^{-1/2} = \frac{1}{\sqrt{y}}
  • 31x=313x=33x=3y3^{1-x} = 3^1 \cdot 3^{-x} = \frac{3}{3^x} = \frac{3}{y}

Substitute these into the original expression: limy9y+27y121y3y\lim_{y \to 9} \frac{y + \frac{27}{y} - 12}{\frac{1}{\sqrt{y}} - \frac{3}{y}}

Step 3: Simplify the complex fraction. Combine terms in the numerator and denominator: Numerator: y+27y12=y2+2712yy=y212y+27yy + \frac{27}{y} - 12 = \frac{y^2 + 27 - 12y}{y} = \frac{y^2 - 12y + 27}{y} Denominator: 1y3y=yy3y=y3y\frac{1}{\sqrt{y}} - \frac{3}{y} = \frac{\sqrt{y}}{y} - \frac{3}{y} = \frac{\sqrt{y} - 3}{y}

Now the limit expression becomes: limy9y212y+27yy3y\lim_{y \to 9} \frac{\frac{y^2 - 12y + 27}{y}}{\frac{\sqrt{y} - 3}{y}} Since y9y \to 9, y0y \neq 0, so we can cancel yy from the numerator and denominator of the larger fraction: limy9y212y+27y3\lim_{y \to 9} \frac{y^2 - 12y + 27}{\sqrt{y} - 3}

Step 4: Factorize the numerator. The quadratic expression in the numerator is y212y+27y^2 - 12y + 27. We need to find two numbers that multiply to 27 and add to -12. These numbers are -3 and -9. So, y212y+27=(y3)(y9)y^2 - 12y + 27 = (y-3)(y-9).

Step 5: Factorize the term causing the indeterminate form. The term causing the 0/00/0 form is (y3)(\sqrt{y}-3) in the denominator. We can relate y9y-9 to this term using the difference of squares formula, a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b). Here, y9=(y)232=(y3)(y+3)y-9 = (\sqrt{y})^2 - 3^2 = (\sqrt{y}-3)(\sqrt{y}+3).

Step 6: Substitute factored forms and cancel common terms. Substitute the factored forms back into the limit expression: limy9(y3)(y9)y3=limy9(y3)(y3)(y+3)y3\lim_{y \to 9} \frac{(y-3)(y-9)}{\sqrt{y} - 3} = \lim_{y \to 9} \frac{(y-3)(\sqrt{y}-3)(\sqrt{y}+3)}{\sqrt{y} - 3} Since y9y \to 9, y9y \neq 9, which implies y3\sqrt{y} \neq 3. Therefore, we can cancel the common factor (y3)(\sqrt{y}-3): limy9(y3)(y+3)\lim_{y \to 9} (y-3)(\sqrt{y}+3)

Step 7: Evaluate the limit. Now, substitute y=9y=9 into the simplified expression: (93)(9+3)=(6)(3+3)=(6)(6)=36(9-3)(\sqrt{9}+3) = (6)(3+3) = (6)(6) = 36

The value of the limit is 36.