Solveeit Logo

Question

Question: Let O be the centre of a regular pentagon ABCDE and $\overline{OA} = \overline{a}$. then $\overline{...

Let O be the centre of a regular pentagon ABCDE and OA=a\overline{OA} = \overline{a}. then AB+2BC+3CD+4DE+5EA\overline{AB} + 2\overline{BC} + 3\overline{CD} + 4\overline{DE} + 5\overline{EA} equals:

A

0

B

4a4\overline{a}

C

5a5\overline{a}

D

6a6\overline{a}

Answer

5a5\overline{a}

Explanation

Solution

Let the position vectors of the vertices A, B, C, D, E with respect to the center O be a,b,c,d,e\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e} respectively. So, OA=a\overline{OA} = \overline{a}.

We can express each vector in the given sum in terms of these position vectors:

AB=OBOA=ba\overline{AB} = \overline{OB} - \overline{OA} = \overline{b} - \overline{a}

BC=OCOB=cb\overline{BC} = \overline{OC} - \overline{OB} = \overline{c} - \overline{b}

CD=ODOC=dc\overline{CD} = \overline{OD} - \overline{OC} = \overline{d} - \overline{c}

DE=OEOD=ed\overline{DE} = \overline{OE} - \overline{OD} = \overline{e} - \overline{d}

EA=OAOE=ae\overline{EA} = \overline{OA} - \overline{OE} = \overline{a} - \overline{e}

Substitute these into the expression:

S=(ba)+2(cb)+3(dc)+4(ed)+5(ae)S = (\overline{b} - \overline{a}) + 2(\overline{c} - \overline{b}) + 3(\overline{d} - \overline{c}) + 4(\overline{e} - \overline{d}) + 5(\overline{a} - \overline{e})

Expand and group terms by position vectors:

S=ba+2c2b+3d3c+4e4d+5a5eS = \overline{b} - \overline{a} + 2\overline{c} - 2\overline{b} + 3\overline{d} - 3\overline{c} + 4\overline{e} - 4\overline{d} + 5\overline{a} - 5\overline{e}

S=(a+5a)+(b2b)+(2c3c)+(3d4d)+(4e5e)S = (-\overline{a} + 5\overline{a}) + (\overline{b} - 2\overline{b}) + (2\overline{c} - 3\overline{c}) + (3\overline{d} - 4\overline{d}) + (4\overline{e} - 5\overline{e})

S=4abcdeS = 4\overline{a} - \overline{b} - \overline{c} - \overline{d} - \overline{e}

S=4a(b+c+d+e)S = 4\overline{a} - (\overline{b} + \overline{c} + \overline{d} + \overline{e})

For a regular pentagon with its center at the origin, the sum of the position vectors from the center to its vertices is the zero vector:

OA+OB+OC+OD+OE=0\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} + \overline{OE} = \overline{0}

a+b+c+d+e=0\overline{a} + \overline{b} + \overline{c} + \overline{d} + \overline{e} = \overline{0}

From this, we can write:

b+c+d+e=a\overline{b} + \overline{c} + \overline{d} + \overline{e} = -\overline{a}

Substitute this back into the expression for S:

S=4a(a)S = 4\overline{a} - (-\overline{a})

S=4a+aS = 4\overline{a} + \overline{a}

S=5aS = 5\overline{a}