Solveeit Logo

Question

Question: $\int \sec^n x \tan x dx$ is equal to...

secnxtanxdx\int \sec^n x \tan x dx is equal to

A

secnxn+c\frac{\sec^n x}{n} + c

B

sec2x2+c\frac{\sec^2 x}{2} + c

C

tanxn+c\frac{\tan x}{n} + c

D

(secnx)n\frac{(\sec^n x)}{n}

Answer

(a) secnxn+c\frac{\sec^n x}{n} + c

Explanation

Solution

To evaluate the integral secnxtanxdx\int \sec^n x \tan x dx, we can use the method of substitution.

Let u=secxu = \sec x.
Now, differentiate uu with respect to xx:
dudx=ddx(secx)=secxtanx\frac{du}{dx} = \frac{d}{dx}(\sec x) = \sec x \tan x.
From this, we can write du=secxtanxdxdu = \sec x \tan x dx.

Now, rewrite the original integral by separating one secx\sec x term:
secnxtanxdx=secn1x(secxtanx)dx\int \sec^n x \tan x dx = \int \sec^{n-1} x \cdot (\sec x \tan x) dx.

Substitute u=secxu = \sec x and du=secxtanxdxdu = \sec x \tan x dx into the integral:
The integral becomes un1du\int u^{n-1} du.

Now, apply the power rule for integration, which states that xkdx=xk+1k+1+C\int x^k dx = \frac{x^{k+1}}{k+1} + C (for k1k \neq -1).
In our case, k=n1k = n-1. So,
un1du=u(n1)+1(n1)+1+C=unn+C\int u^{n-1} du = \frac{u^{(n-1)+1}}{(n-1)+1} + C = \frac{u^n}{n} + C.

Finally, substitute back u=secxu = \sec x:
The integral evaluates to (secx)nn+C=secnxn+C\frac{(\sec x)^n}{n} + C = \frac{\sec^n x}{n} + C.

This result is valid for n0n \neq 0.

Comparing this result with the given options:
(a) secnxn+c\frac{\sec^n x}{n} + c
(b) sec2x2+c\frac{\sec^2 x}{2} + c
(c) tanxn+c\frac{\tan x}{n} + c
(d) (secnx)n\frac{(\sec^n x)}{n}

Option (a) matches our derived solution exactly, including the constant of integration 'c'. Option (d) is missing the constant of integration, which is conventionally included in indefinite integrals.