Solveeit Logo

Question

Question: In a parallelogram $ABCD$, $|AB| = a$, $|AD| = b$ and $|AC| = c$, then $\overrightarrow{DB}.\overrig...

In a parallelogram ABCDABCD, AB=a|AB| = a, AD=b|AD| = b and AC=c|AC| = c, then DB.AB\overrightarrow{DB}.\overrightarrow{AB} has the value:

A

3a2+b2c22\frac{3a^2 + b^2 - c^2}{2}

B

a2+3b2c22\frac{a^2 + 3b^2 - c^2}{2}

C

a2b2+3c22\frac{a^2 - b^2 + 3c^2}{2}

D

a2+3b2+c22\frac{a^2 + 3b^2 + c^2}{2}

Answer

3a2+b2c22\frac{3a^2 + b^2 - c^2}{2}

Explanation

Solution

Let the parallelogram be ABCDABCD. We are given AB=a|AB| = a, AD=b|AD| = b, and AC=c|AC| = c. We can represent the sides as vectors: AB\overrightarrow{AB} and AD\overrightarrow{AD}. The diagonal AC=AB+AD\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}. The other diagonal DB=ABAD\overrightarrow{DB} = \overrightarrow{AB} - \overrightarrow{AD}.

We are asked to find DBAB\overrightarrow{DB} \cdot \overrightarrow{AB}. DBAB=(ABAD)AB\overrightarrow{DB} \cdot \overrightarrow{AB} = (\overrightarrow{AB} - \overrightarrow{AD}) \cdot \overrightarrow{AB} Using the distributive property of the dot product: DBAB=ABABADAB\overrightarrow{DB} \cdot \overrightarrow{AB} = \overrightarrow{AB} \cdot \overrightarrow{AB} - \overrightarrow{AD} \cdot \overrightarrow{AB} We know that ABAB=AB2=a2\overrightarrow{AB} \cdot \overrightarrow{AB} = |\overrightarrow{AB}|^2 = a^2. So, DBAB=a2ADAB\overrightarrow{DB} \cdot \overrightarrow{AB} = a^2 - \overrightarrow{AD} \cdot \overrightarrow{AB} Now we need to find ADAB\overrightarrow{AD} \cdot \overrightarrow{AB}. We use the given length of the diagonal ACAC. AC2=c2|\overrightarrow{AC}|^2 = c^2 AB+AD2=c2|\overrightarrow{AB} + \overrightarrow{AD}|^2 = c^2 (AB+AD)(AB+AD)=c2(\overrightarrow{AB} + \overrightarrow{AD}) \cdot (\overrightarrow{AB} + \overrightarrow{AD}) = c^2 AB2+AD2+2(ABAD)=c2|\overrightarrow{AB}|^2 + |\overrightarrow{AD}|^2 + 2 (\overrightarrow{AB} \cdot \overrightarrow{AD}) = c^2 a2+b2+2(ABAD)=c2a^2 + b^2 + 2 (\overrightarrow{AB} \cdot \overrightarrow{AD}) = c^2 From this, we can express the dot product: 2(ABAD)=c2a2b22 (\overrightarrow{AB} \cdot \overrightarrow{AD}) = c^2 - a^2 - b^2 ABAD=c2a2b22\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{c^2 - a^2 - b^2}{2} Substitute this back into the expression for DBAB\overrightarrow{DB} \cdot \overrightarrow{AB}: DBAB=a2(c2a2b22)\overrightarrow{DB} \cdot \overrightarrow{AB} = a^2 - \left( \frac{c^2 - a^2 - b^2}{2} \right) DBAB=a2c22+a22+b22\overrightarrow{DB} \cdot \overrightarrow{AB} = a^2 - \frac{c^2}{2} + \frac{a^2}{2} + \frac{b^2}{2} DBAB=2a2+a2+b2c22\overrightarrow{DB} \cdot \overrightarrow{AB} = \frac{2a^2 + a^2 + b^2 - c^2}{2} DBAB=3a2+b2c22\overrightarrow{DB} \cdot \overrightarrow{AB} = \frac{3a^2 + b^2 - c^2}{2}