Solveeit Logo

Question

Question: If $\frac{sin A}{sin B} = \frac{\sqrt{3}}{2}$ and $\frac{cos A}{cos B} = \frac{\sqrt{5}}{2}, 0 < A, ...

If sinAsinB=32\frac{sin A}{sin B} = \frac{\sqrt{3}}{2} and cosAcosB=52,0<A,B<π2\frac{cos A}{cos B} = \frac{\sqrt{5}}{2}, 0 < A, B < \frac{\pi}{2} then tan A + tan B is equal to:

A

35\sqrt{\frac{3}{5}}

B

53\sqrt{\frac{5}{3}}

C

3+55\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}

D

3+53\frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}}

Answer

(c)

Explanation

Solution

The problem asks us to find the value of tanA+tanB\tan A + \tan B given two trigonometric ratios and the range for angles A and B.

Given:

  1. sinAsinB=32\frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2}
  2. cosAcosB=52\frac{\cos A}{\cos B} = \frac{\sqrt{5}}{2}
  3. 0<A,B<π20 < A, B < \frac{\pi}{2}

From equation (1), we can write sinA=32sinB\sin A = \frac{\sqrt{3}}{2} \sin B. From equation (2), we can write cosA=52cosB\cos A = \frac{\sqrt{5}}{2} \cos B.

We know the fundamental trigonometric identity: sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. Substitute the expressions for sinA\sin A and cosA\cos A in terms of sinB\sin B and cosB\cos B into this identity: (32sinB)2+(52cosB)2=1(\frac{\sqrt{3}}{2} \sin B)^2 + (\frac{\sqrt{5}}{2} \cos B)^2 = 1 34sin2B+54cos2B=1\frac{3}{4} \sin^2 B + \frac{5}{4} \cos^2 B = 1

Multiply the entire equation by 4 to clear the denominators: 3sin2B+5cos2B=43 \sin^2 B + 5 \cos^2 B = 4

Now, we can express this equation in terms of tanB\tan B. Divide the entire equation by cos2B\cos^2 B. Since 0<B<π20 < B < \frac{\pi}{2}, cosB0\cos B \neq 0. 3sin2Bcos2B+5cos2Bcos2B=4cos2B\frac{3 \sin^2 B}{\cos^2 B} + \frac{5 \cos^2 B}{\cos^2 B} = \frac{4}{\cos^2 B} 3tan2B+5=4sec2B3 \tan^2 B + 5 = 4 \sec^2 B

Using the identity sec2B=1+tan2B\sec^2 B = 1 + \tan^2 B: 3tan2B+5=4(1+tan2B)3 \tan^2 B + 5 = 4 (1 + \tan^2 B) 3tan2B+5=4+4tan2B3 \tan^2 B + 5 = 4 + 4 \tan^2 B

Rearrange the terms to solve for tan2B\tan^2 B: 54=4tan2B3tan2B5 - 4 = 4 \tan^2 B - 3 \tan^2 B 1=tan2B1 = \tan^2 B

Since 0<B<π20 < B < \frac{\pi}{2}, tanB\tan B must be positive. Therefore, tanB=1\tan B = 1

Next, we need to find tanA\tan A. We can express tanA\tan A in terms of tanB\tan B: tanA=sinAcosA=32sinB52cosB=35sinBcosB=35tanB\tan A = \frac{\sin A}{\cos A} = \frac{\frac{\sqrt{3}}{2} \sin B}{\frac{\sqrt{5}}{2} \cos B} = \frac{\sqrt{3}}{\sqrt{5}} \frac{\sin B}{\cos B} = \frac{\sqrt{3}}{\sqrt{5}} \tan B

Substitute the value of tanB=1\tan B = 1: tanA=35×1=35\tan A = \frac{\sqrt{3}}{\sqrt{5}} \times 1 = \frac{\sqrt{3}}{\sqrt{5}}

Finally, we need to calculate tanA+tanB\tan A + \tan B: tanA+tanB=35+1\tan A + \tan B = \frac{\sqrt{3}}{\sqrt{5}} + 1 To combine these terms, find a common denominator: tanA+tanB=35+55=3+55\tan A + \tan B = \frac{\sqrt{3}}{\sqrt{5}} + \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}

Comparing this result with the given options, the calculated value matches option (c).