Question
Question: If A = tan 6° tan 42° and B = cot 66° cot 78°, then -...
If A = tan 6° tan 42° and B = cot 66° cot 78°, then -

A = 2B
A = 1/3B
A = B
3
A = B
Solution
Here's how to solve the problem:
-
Simplify B using the identity cot θ = tan (90° - θ):
B = cot 66° cot 78°
B = tan (90° - 66°) tan (90° - 78°)
B = tan 24° tan 12° -
Use the identity tanθtan(60∘−θ)tan(60∘+θ)=tan(3θ).
-
Apply for θ=6∘: tan6∘tan54∘tan66∘=tan18∘.
Substitute tan54∘=cot36∘=1/tan36∘ and tan66∘=cot24∘=1/tan24∘.
This yields tan6∘⋅tan36∘1⋅tan24∘1=tan18∘, so tan6∘=tan18∘tan24∘tan36∘.
-
Substitute this into A: A=(tan18∘tan24∘tan36∘)tan42∘.
-
Now compare A and B:
A=tan18∘tan24∘tan36∘tan42∘
B=tan12∘tan24∘Divide both by tan24∘:
A/tan24∘=tan18∘tan36∘tan42∘
B/tan24∘=tan12∘ -
Simplify tan18∘tan36∘tan42∘ using the same identity for θ=18∘:
tan18∘tan(60∘−18∘)tan(60∘+18∘)=tan(3×18∘)
tan18∘tan42∘tan78∘=tan54∘.So, tan18∘tan42∘=tan78∘tan54∘=cot12∘cot36∘=tan36∘tan12∘.
-
Substitute this back: tan18∘tan36∘tan42∘=(tan18∘tan42∘)tan36∘=(tan36∘tan12∘)tan36∘=tan12∘.
-
Thus, A/tan24∘=tan12∘, which is equal to B/tan24∘.
-
Therefore, A = B.