Solveeit Logo

Question

Question: If A = tan 6° tan 42° and B = cot 66° cot 78°, then -...

If A = tan 6° tan 42° and B = cot 66° cot 78°, then -

A

A = 2B

B

A = 1/3B

C

A = B

D

3

Answer

A = B

Explanation

Solution

Here's how to solve the problem:

  1. Simplify B using the identity cot θ = tan (90° - θ):

    B = cot 66° cot 78°
    B = tan (90° - 66°) tan (90° - 78°)
    B = tan 24° tan 12°

  2. Use the identity tanθtan(60θ)tan(60+θ)=tan(3θ)\tan \theta \tan(60^\circ - \theta) \tan(60^\circ + \theta) = \tan(3\theta).

  3. Apply for θ=6\theta = 6^\circ: tan6tan54tan66=tan18\tan 6^\circ \tan 54^\circ \tan 66^\circ = \tan 18^\circ.

    Substitute tan54=cot36=1/tan36\tan 54^\circ = \cot 36^\circ = 1/\tan 36^\circ and tan66=cot24=1/tan24\tan 66^\circ = \cot 24^\circ = 1/\tan 24^\circ.

    This yields tan61tan361tan24=tan18\tan 6^\circ \cdot \frac{1}{\tan 36^\circ} \cdot \frac{1}{\tan 24^\circ} = \tan 18^\circ, so tan6=tan18tan24tan36\tan 6^\circ = \tan 18^\circ \tan 24^\circ \tan 36^\circ.

  4. Substitute this into A: A=(tan18tan24tan36)tan42A = (\tan 18^\circ \tan 24^\circ \tan 36^\circ) \tan 42^\circ.

  5. Now compare A and B:

    A=tan18tan24tan36tan42A = \tan 18^\circ \tan 24^\circ \tan 36^\circ \tan 42^\circ
    B=tan12tan24B = \tan 12^\circ \tan 24^\circ

    Divide both by tan24\tan 24^\circ:

    A/tan24=tan18tan36tan42A/\tan 24^\circ = \tan 18^\circ \tan 36^\circ \tan 42^\circ
    B/tan24=tan12B/\tan 24^\circ = \tan 12^\circ

  6. Simplify tan18tan36tan42\tan 18^\circ \tan 36^\circ \tan 42^\circ using the same identity for θ=18\theta = 18^\circ:

    tan18tan(6018)tan(60+18)=tan(3×18)\tan 18^\circ \tan(60^\circ - 18^\circ) \tan(60^\circ + 18^\circ) = \tan(3 \times 18^\circ)
    tan18tan42tan78=tan54\tan 18^\circ \tan 42^\circ \tan 78^\circ = \tan 54^\circ.

    So, tan18tan42=tan54tan78=cot36cot12=tan12tan36\tan 18^\circ \tan 42^\circ = \frac{\tan 54^\circ}{\tan 78^\circ} = \frac{\cot 36^\circ}{\cot 12^\circ} = \frac{\tan 12^\circ}{\tan 36^\circ}.

  7. Substitute this back: tan18tan36tan42=(tan18tan42)tan36=(tan12tan36)tan36=tan12\tan 18^\circ \tan 36^\circ \tan 42^\circ = (\tan 18^\circ \tan 42^\circ) \tan 36^\circ = \left(\frac{\tan 12^\circ}{\tan 36^\circ}\right) \tan 36^\circ = \tan 12^\circ.

  8. Thus, A/tan24=tan12A/\tan 24^\circ = \tan 12^\circ, which is equal to B/tan24B/\tan 24^\circ.

  9. Therefore, A = B.