Solveeit Logo

Question

Question: $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ = $(a+b+c)^3$...

abc2a2a2bbca2b2c2ccab\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)3(a+b+c)^3

Answer

(a+b+c)3(a+b+c)^3

Explanation

Solution

To prove the identity:

abc2a2a2bbca2b2c2ccab=(a+b+c)3\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3

Let the given determinant be DD.

D=abc2a2a2bbca2b2c2ccabD = \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}

Apply the row operation R1R1+R2+R3R_1 \to R_1 + R_2 + R_3:

D=(abc)+2b+2c2a+(bca)+2c2a+2b+(cab)2bbca2b2c2ccabD = \begin{vmatrix} (a-b-c)+2b+2c & 2a+(b-c-a)+2c & 2a+2b+(c-a-b) \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}

Simplify the elements of the first row:

D=a+b+ca+b+ca+b+c2bbca2b2c2ccabD = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}

Take out the common factor (a+b+c)(a+b+c) from R1R_1:

D=(a+b+c)1112bbca2b2c2ccabD = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}

Apply the column operations C2C2C1C_2 \to C_2 - C_1 and C3C3C1C_3 \to C_3 - C_1:

D=(a+b+c)111112b(bca)2b2b2b2c2c2c(cab)2cD = (a+b+c) \begin{vmatrix} 1 & 1-1 & 1-1 \\ 2b & (b-c-a)-2b & 2b-2b \\ 2c & 2c-2c & (c-a-b)-2c \end{vmatrix}

Simplify the elements:

D=(a+b+c)1002babc02c0abcD = (a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ 2b & -a-b-c & 0 \\ 2c & 0 & -a-b-c \end{vmatrix}

D=(a+b+c)1002b(a+b+c)02c0(a+b+c)D = (a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ 2b & -(a+b+c) & 0 \\ 2c & 0 & -(a+b+c) \end{vmatrix}

This is a lower triangular matrix. The determinant of a triangular matrix is the product of its diagonal elements.

D=(a+b+c)×[1×((a+b+c))×((a+b+c))]D = (a+b+c) \times [1 \times (-(a+b+c)) \times (-(a+b+c))]

D=(a+b+c)×(a+b+c)2D = (a+b+c) \times (a+b+c)^2

D=(a+b+c)3D = (a+b+c)^3

Thus, the identity is proven.