Solveeit Logo

Question

Question: $\frac{sin(B + A) + cos(B - A)}{sin(B - A) + cos(B + A)}$ = [IIT JEE]...

sin(B+A)+cos(BA)sin(BA)+cos(B+A)\frac{sin(B + A) + cos(B - A)}{sin(B - A) + cos(B + A)} = [IIT JEE]

A

cosB+sinBcosBsinB\frac{cos B + sin B}{cos B - sin B}

B

cosA+sinAcosAsinA\frac{cos A + sin A}{cos A - sin A}

C

cosAsinAcosA+sinA\frac{cos A - sin A}{cos A + sin A}

D

None of these

Answer

(b) cosA+sinAcosAsinA\frac{cos A + sin A}{cos A - sin A}

Explanation

Solution

To simplify the expression sin(B+A)+cos(BA)sin(BA)+cos(B+A)\frac{\sin(B + A) + \cos(B - A)}{\sin(B - A) + \cos(B + A)}, we use the sum and difference identities for sine and cosine:

  1. sin(X+Y)=sinXcosY+cosXsinY\sin(X+Y) = \sin X \cos Y + \cos X \sin Y
  2. sin(XY)=sinXcosYcosXsinY\sin(X-Y) = \sin X \cos Y - \cos X \sin Y
  3. cos(X+Y)=cosXcosYsinXsinY\cos(X+Y) = \cos X \cos Y - \sin X \sin Y
  4. cos(XY)=cosXcosY+sinXsinY\cos(X-Y) = \cos X \cos Y + \sin X \sin Y

Expanding the numerator: sin(B+A)+cos(BA)=(sinBcosA+cosBsinA)+(cosBcosA+sinBsinA)=(sinB+cosB)(cosA+sinA)\sin(B + A) + \cos(B - A) = (\sin B \cos A + \cos B \sin A) + (\cos B \cos A + \sin B \sin A) = (\sin B + \cos B)(\cos A + \sin A)

Expanding the denominator: sin(BA)+cos(B+A)=(sinBcosAcosBsinA)+(cosBcosAsinBsinA)=(sinB+cosB)(cosAsinA)\sin(B - A) + \cos(B + A) = (\sin B \cos A - \cos B \sin A) + (\cos B \cos A - \sin B \sin A) = (\sin B + \cos B)(\cos A - \sin A)

Therefore, the expression simplifies to: (sinB+cosB)(cosA+sinA)(sinB+cosB)(cosAsinA)=cosA+sinAcosAsinA\frac{(\sin B + \cos B)(\cos A + \sin A)}{(\sin B + \cos B)(\cos A - \sin A)} = \frac{\cos A + \sin A}{\cos A - \sin A}