Question
Question: $\frac{sin(B + A) + cos(B - A)}{sin(B - A) + cos(B + A)}$ = [IIT JEE]...
sin(B−A)+cos(B+A)sin(B+A)+cos(B−A) = [IIT JEE]

A
cosB−sinBcosB+sinB
B
cosA−sinAcosA+sinA
C
cosA+sinAcosA−sinA
D
None of these
Answer
(b) cosA−sinAcosA+sinA
Explanation
Solution
To simplify the expression sin(B−A)+cos(B+A)sin(B+A)+cos(B−A), we use the sum and difference identities for sine and cosine:
- sin(X+Y)=sinXcosY+cosXsinY
- sin(X−Y)=sinXcosY−cosXsinY
- cos(X+Y)=cosXcosY−sinXsinY
- cos(X−Y)=cosXcosY+sinXsinY
Expanding the numerator: sin(B+A)+cos(B−A)=(sinBcosA+cosBsinA)+(cosBcosA+sinBsinA)=(sinB+cosB)(cosA+sinA)
Expanding the denominator: sin(B−A)+cos(B+A)=(sinBcosA−cosBsinA)+(cosBcosA−sinBsinA)=(sinB+cosB)(cosA−sinA)
Therefore, the expression simplifies to: (sinB+cosB)(cosA−sinA)(sinB+cosB)(cosA+sinA)=cosA−sinAcosA+sinA