Solveeit Logo

Question

Question: A circle is inscribed into a rhombus $ABCD$ with one angle $60°$. The distance from the centre of th...

A circle is inscribed into a rhombus ABCDABCD with one angle 60°60°. The distance from the centre of the circle to the nearest vertex is equal to 1. If PP is any point of the circle, then PA2+PB2+PC2+PD2|PA|^2 + |PB|^2 + |PC|^2 + |PD|^2 is equal to :

A

12

B

11

C

9

D

None of these

Answer

11

Explanation

Solution

Let OO be the center of the inscribed circle and the rhombus. Let the vertices of the rhombus be A,B,C,DA, B, C, D such that A=60°\angle A = 60°. Then B=120°\angle B = 120°, C=60°\angle C = 60°, D=120°\angle D = 120°. The diagonals of the rhombus bisect each other at right angles at OO.

Consider the right-angled triangle OAB\triangle OAB. The angles are OAB=60°/2=30°\angle OAB = 60°/2 = 30° and OBA=120°/2=60°\angle OBA = 120°/2 = 60°. Let OA=d1OA = d_1 and OB=d2OB = d_2. In OAB\triangle OAB: tan(30°)=OBOA    13=d2d1    d1=3d2\tan(30°) = \frac{OB}{OA} \implies \frac{1}{\sqrt{3}} = \frac{d_2}{d_1} \implies d_1 = \sqrt{3} d_2. The distance to the nearest vertex is given as 1. Since d1=3d2d_1 = \sqrt{3} d_2, d2d_2 is the shorter distance. Thus, OB=OD=d2=1OB = OD = d_2 = 1. Consequently, OA=OC=d1=3×1=3OA = OC = d_1 = \sqrt{3} \times 1 = \sqrt{3}.

The radius rr of the inscribed circle is the altitude from OO to the hypotenuse ABAB in OAB\triangle OAB. The area of OAB\triangle OAB can be calculated in two ways: Area =12×OA×OB=12×3×1=32= \frac{1}{2} \times OA \times OB = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}. Also, Area =12×AB×r= \frac{1}{2} \times AB \times r. The length of the side AB=OA2+OB2=(3)2+12=3+1=2AB = \sqrt{OA^2 + OB^2} = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3+1} = 2. So, Area =12×2×r=r= \frac{1}{2} \times 2 \times r = r. Equating the areas, r=32r = \frac{\sqrt{3}}{2}.

Let PP be any point on the inscribed circle. We want to find PA2+PB2+PC2+PD2|PA|^2 + |PB|^2 + |PC|^2 + |PD|^2. We can use the property that for any point PP and a set of points V1,V2,,VnV_1, V_2, \dots, V_n, if OO is the centroid of these points, then i=1nPVi2=nPO2+i=1nOVi2\sum_{i=1}^n |PV_i|^2 = n|PO|^2 + \sum_{i=1}^n |OV_i|^2. In our case, n=4n=4 and OO is the centroid of the vertices A,B,C,DA, B, C, D of the rhombus. PP is on the circle with center OO, so PO2=r2|PO|^2 = r^2. The sum is S=4PO2+OA2+OB2+OC2+OD2S = 4|PO|^2 + |OA|^2 + |OB|^2 + |OC|^2 + |OD|^2. S=4r2+OA2+OB2+OC2+OD2S = 4r^2 + OA^2 + OB^2 + OC^2 + OD^2. Substitute the values: r2=(32)2=34r^2 = (\frac{\sqrt{3}}{2})^2 = \frac{3}{4}. OA2=(3)2=3OA^2 = (\sqrt{3})^2 = 3. OB2=12=1OB^2 = 1^2 = 1. OC2=(3)2=3OC^2 = (\sqrt{3})^2 = 3. OD2=12=1OD^2 = 1^2 = 1.

S=4(34)+3+1+3+1S = 4\left(\frac{3}{4}\right) + 3 + 1 + 3 + 1 S=3+8S = 3 + 8 S=11S = 11.

Alternatively, using coordinates: Let OO be the origin (0,0)(0,0). The vertices are A=(3,0)A=(\sqrt{3}, 0), B=(0,1)B=(0, 1), C=(3,0)C=(-\sqrt{3}, 0), D=(0,1)D=(0, -1). Let P=(x,y)P=(x,y) be a point on the circle x2+y2=r2=34x^2+y^2 = r^2 = \frac{3}{4}. PA2=(x3)2+y2=x223x+3+y2|PA|^2 = (x-\sqrt{3})^2 + y^2 = x^2 - 2\sqrt{3}x + 3 + y^2. PB2=x2+(y1)2=x2+y22y+1|PB|^2 = x^2 + (y-1)^2 = x^2 + y^2 - 2y + 1. PC2=(x+3)2+y2=x2+23x+3+y2|PC|^2 = (x+\sqrt{3})^2 + y^2 = x^2 + 2\sqrt{3}x + 3 + y^2. PD2=x2+(y+1)2=x2+y2+2y+1|PD|^2 = x^2 + (y+1)^2 = x^2 + y^2 + 2y + 1. Summing these: PA2+PB2+PC2+PD2=(x2+y223x+3)+(x2+y22y+1)+(x2+y2+23x+3)+(x2+y2+2y+1)|PA|^2 + |PB|^2 + |PC|^2 + |PD|^2 = (x^2+y^2 - 2\sqrt{3}x + 3) + (x^2+y^2 - 2y + 1) + (x^2+y^2 + 2\sqrt{3}x + 3) + (x^2+y^2 + 2y + 1) =4(x2+y2)+(23x+23x)+(2y+2y)+(3+1+3+1)= 4(x^2+y^2) + (-2\sqrt{3}x + 2\sqrt{3}x) + (-2y + 2y) + (3+1+3+1) =4(x2+y2)+8= 4(x^2+y^2) + 8. Since x2+y2=34x^2+y^2 = \frac{3}{4}, Sum =4(34)+8=3+8=11= 4(\frac{3}{4}) + 8 = 3 + 8 = 11.