Solveeit Logo

Question

Question: A ball is thrown straight upward with a speed v from a point h meter above the ground is: taken for ...

A ball is thrown straight upward with a speed v from a point h meter above the ground is: taken for the ball to strike the ground is:

A

vg[1+1+2hgv2]\frac{v}{g}\left[1+\sqrt{1+\frac{2hg}{v^2}}\right]

B

vg[112hgv2]\frac{v}{g}\left[1-\sqrt{1-\frac{2hg}{v^2}}\right]

C

vg[11+2hgv2]\frac{v}{g}\left[1-\sqrt{1+\frac{2hg}{v^2}}\right]

D

vg[2+1+2hgv2]\frac{v}{g}\left[2+\sqrt{1+\frac{2hg}{v^2}}\right]

Answer

vg[1+1+2hgv2]\frac{v}{g}\left[1+\sqrt{1+\frac{2hg}{v^2}}\right]

Explanation

Solution

Let's set up a coordinate system with the origin at the ground and the upward direction as positive.

The initial position of the ball is y0=hy_0 = h.
The initial velocity of the ball is v0=+vv_0 = +v (since it is thrown straight upward).
The acceleration due to gravity is a=ga = -g (acting downward).

We want to find the time tt when the ball strikes the ground, which means its position is y(t)=0y(t) = 0.
We use the kinematic equation relating position, initial position, initial velocity, acceleration, and time:
y(t)=y0+v0t+12at2y(t) = y_0 + v_0 t + \frac{1}{2} a t^2

Substitute the known values:
0=h+vt+12(g)t20 = h + v t + \frac{1}{2} (-g) t^2
0=h+vt12gt20 = h + vt - \frac{1}{2}gt^2

Rearrange the equation into a standard quadratic form At2+Bt+C=0At^2 + Bt + C = 0:
12gt2vth=0\frac{1}{2}gt^2 - vt - h = 0

This is a quadratic equation for tt with coefficients A=g2A = \frac{g}{2}, B=vB = -v, and C=hC = -h.
We can solve for tt using the quadratic formula t=B±B24AC2At = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}:
t=(v)±(v)24(g2)(h)2(g2)t = \frac{-(-v) \pm \sqrt{(-v)^2 - 4(\frac{g}{2})(-h)}}{2(\frac{g}{2})}
t=v±v2+2ghgt = \frac{v \pm \sqrt{v^2 + 2gh}}{g}

This gives two possible solutions for tt:
t1=v+v2+2ghgt_1 = \frac{v + \sqrt{v^2 + 2gh}}{g}
t2=vv2+2ghgt_2 = \frac{v - \sqrt{v^2 + 2gh}}{g}

Since v>0v > 0, g>0g > 0, and h>0h > 0, the term v2+2gh\sqrt{v^2 + 2gh} is real and positive.
Also, v2+2gh>v2v^2 + 2gh > v^2, which implies v2+2gh>v2=v\sqrt{v^2 + 2gh} > \sqrt{v^2} = v (assuming v>0v>0).
Therefore, vv2+2ghv - \sqrt{v^2 + 2gh} is a negative quantity.
So, t2=vv2+2ghgt_2 = \frac{v - \sqrt{v^2 + 2gh}}{g} is negative. Time tt is the duration after the ball is thrown, so it must be positive. The negative solution represents a time before the ball was thrown, which is not relevant to the problem.

The physically relevant solution is the positive one:
t=v+v2+2ghgt = \frac{v + \sqrt{v^2 + 2gh}}{g}

Now, we need to check which option matches this result. Let's rewrite the expression to match the form of option (A):
t=vg+v2+2ghgt = \frac{v}{g} + \frac{\sqrt{v^2 + 2gh}}{g}
We can factor out vg\frac{v}{g} from the expression:
t=vg(vv+v2+2ghv)t = \frac{v}{g} \left( \frac{v}{v} + \frac{\sqrt{v^2 + 2gh}}{v} \right)
t=vg(1+v2+2ghv2)t = \frac{v}{g} \left( 1 + \frac{\sqrt{v^2 + 2gh}}{\sqrt{v^2}} \right) (assuming v>0v>0)
t=vg(1+v2+2ghv2)t = \frac{v}{g} \left( 1 + \sqrt{\frac{v^2 + 2gh}{v^2}} \right)
t=vg(1+v2v2+2ghv2)t = \frac{v}{g} \left( 1 + \sqrt{\frac{v^2}{v^2} + \frac{2gh}{v^2}} \right)
t=vg[1+1+2ghv2]t = \frac{v}{g} \left[ 1 + \sqrt{1 + \frac{2gh}{v^2}} \right]

This expression matches option (A).