Solveeit Logo

Question

Question: A ball is thrown straight upward with a speed v from a point h meter above the ground is: taken for ...

A ball is thrown straight upward with a speed v from a point h meter above the ground is: taken for the ball to strike the ground is:

A

vg[1+1+2hgv2]\frac{v}{g}\left[1+\sqrt{1+\frac{2hg}{v^2}}\right]

B

vg[112hgv2]\frac{v}{g}\left[1-\sqrt{1-\frac{2hg}{v^2}}\right]

C

vg[11+2hgv2]\frac{v}{g}\left[1-\sqrt{1+\frac{2hg}{v^2}}\right]

D

vg[2+1+2hgv2]\frac{v}{g}\left[2+\sqrt{1+\frac{2hg}{v^2}}\right]

Answer

vg[1+1+2hgv2]\frac{v}{g}\left[1+\sqrt{1+\frac{2hg}{v^2}}\right]

Explanation

Solution

The ball is thrown straight upward from a point hh meters above the ground with an initial speed vv. We need to find the time taken for the ball to strike the ground.

Let's set up a coordinate system with the origin at the ground level and the positive y-axis pointing upward.

The initial position of the ball is y0=hy_0 = h.

The initial velocity of the ball is v0=+vv_0 = +v (since it is thrown upward).

The acceleration due to gravity acts downward, so a=ga = -g.

The final position of the ball when it strikes the ground is y=0y = 0.

We use the kinematic equation that relates position, initial position, initial velocity, acceleration, and time: y=y0+v0t+12at2y = y_0 + v_0 t + \frac{1}{2} a t^2

Substitute the known values into the equation: 0=h+vt+12(g)t20 = h + v t + \frac{1}{2} (-g) t^2 0=h+vt12gt20 = h + vt - \frac{1}{2}gt^2

Rearrange the equation to form a quadratic equation in terms of tt: 12gt2vth=0\frac{1}{2}gt^2 - vt - h = 0 Multiply by 2 to clear the fraction: gt22vt2h=0gt^2 - 2vt - 2h = 0

This is a quadratic equation of the form At2+Bt+C=0At^2 + Bt + C = 0, where A=gA=g, B=2vB=-2v, and C=2hC=-2h. We can solve for tt using the quadratic formula: t=B±B24AC2At = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}

Substitute the values of AA, BB, and CC: t=(2v)±(2v)24(g)(2h)2(g)t = \frac{-(-2v) \pm \sqrt{(-2v)^2 - 4(g)(-2h)}}{2(g)} t=2v±4v2+8gh2gt = \frac{2v \pm \sqrt{4v^2 + 8gh}}{2g}

We can factor out 4 from the term inside the square root: t=2v±4(v2+2gh)2gt = \frac{2v \pm \sqrt{4(v^2 + 2gh)}}{2g} t=2v±2v2+2gh2gt = \frac{2v \pm 2\sqrt{v^2 + 2gh}}{2g}

Now, divide the numerator and the denominator by 2: t=v±v2+2ghgt = \frac{v \pm \sqrt{v^2 + 2gh}}{g}

We have two possible solutions for tt. Since time tt must be positive, we need to evaluate the two roots. The term v2+2gh\sqrt{v^2 + 2gh} is positive. Since v>0v > 0, g>0g > 0, and h>0h > 0, we have v2+2gh>v2v^2 + 2gh > v^2. Taking the square root, we get v2+2gh>v2=v\sqrt{v^2 + 2gh} > \sqrt{v^2} = v. So, vv2+2ghv - \sqrt{v^2 + 2gh} will be negative. And v+v2+2ghv + \sqrt{v^2 + 2gh} will be positive.

Since the time taken must be positive, we take the positive root: t=v+v2+2ghgt = \frac{v + \sqrt{v^2 + 2gh}}{g}

Now, we need to express this result in the form given in the options. The options have a factor of vg\frac{v}{g} outside a bracket. Let's factor out vg\frac{v}{g} from our expression for tt: t=vg(v+v2+2ghv)t = \frac{v}{g} \left( \frac{v + \sqrt{v^2 + 2gh}}{v} \right) t=vg(vv+v2+2ghv)t = \frac{v}{g} \left( \frac{v}{v} + \frac{\sqrt{v^2 + 2gh}}{v} \right) t=vg(1+v2+2ghv2)t = \frac{v}{g} \left( 1 + \sqrt{\frac{v^2 + 2gh}{v^2}} \right) t=vg(1+v2v2+2ghv2)t = \frac{v}{g} \left( 1 + \sqrt{\frac{v^2}{v^2} + \frac{2gh}{v^2}} \right) t=vg(1+1+2ghv2)t = \frac{v}{g} \left( 1 + \sqrt{1 + \frac{2gh}{v^2}} \right)

This expression matches option (A).