Solveeit Logo

Question

Question: 9(4-1/x) + 5(6-1/x) < 4(9-1/x)...

9(4-1/x) + 5(6-1/x) < 4(9-1/x)

Answer

(-1/2, 0)

Explanation

Solution

Let y=1/xy = -1/x. The inequality becomes 9(4y)+5(6y)<4(9y)9(4^y) + 5(6^y) < 4(9^y). Divide by 9y9^y (which is always positive): 9(49)y+5(69)y<49 \left(\frac{4}{9}\right)^y + 5 \left(\frac{6}{9}\right)^y < 4 9((23)2)y+5(23)y<49 \left(\left(\frac{2}{3}\right)^2\right)^y + 5 \left(\frac{2}{3}\right)^y < 4 9(23)2y+5(23)y<49 \left(\frac{2}{3}\right)^{2y} + 5 \left(\frac{2}{3}\right)^y < 4

Let z=(23)yz = \left(\frac{2}{3}\right)^y. Since zz is an exponential term with a positive base, z>0z > 0. The inequality in terms of zz is: 9z2+5z<49z^2 + 5z < 4 9z2+5z4<09z^2 + 5z - 4 < 0

To find the roots of 9z2+5z4=09z^2 + 5z - 4 = 0: Using the quadratic formula z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: z=5±524(9)(4)2(9)=5±25+14418=5±16918=5±1318z = \frac{-5 \pm \sqrt{5^2 - 4(9)(-4)}}{2(9)} = \frac{-5 \pm \sqrt{25 + 144}}{18} = \frac{-5 \pm \sqrt{169}}{18} = \frac{-5 \pm 13}{18} The roots are z1=5+1318=818=49z_1 = \frac{-5 + 13}{18} = \frac{8}{18} = \frac{4}{9} and z2=51318=1818=1z_2 = \frac{-5 - 13}{18} = \frac{-18}{18} = -1.

Since the quadratic 9z2+5z49z^2 + 5z - 4 has a positive leading coefficient (9), the inequality 9z2+5z4<09z^2 + 5z - 4 < 0 holds for zz between the roots: 1<z<49-1 < z < \frac{4}{9}

Considering z>0z > 0, we have 0<z<490 < z < \frac{4}{9}. Substitute back z=(23)yz = \left(\frac{2}{3}\right)^y: 0<(23)y<490 < \left(\frac{2}{3}\right)^y < \frac{4}{9}

The inequality (23)y>0\left(\frac{2}{3}\right)^y > 0 is always true. We solve (23)y<49\left(\frac{2}{3}\right)^y < \frac{4}{9}. Since 49=(23)2\frac{4}{9} = \left(\frac{2}{3}\right)^2, we have: (23)y<(23)2\left(\frac{2}{3}\right)^y < \left(\frac{2}{3}\right)^2

Because the base 23\frac{2}{3} is between 0 and 1, the inequality of the exponents is reversed: y>2y > 2

Substitute back y=1/xy = -1/x: 1x>2-\frac{1}{x} > 2

To solve this inequality: 1x2>0\frac{-1}{x} - 2 > 0 12xx>0\frac{-1 - 2x}{x} > 0 Multiplying the numerator and denominator by -1 to make the numerator positive: 1+2xx<0\frac{1 + 2x}{x} < 0

This rational inequality is satisfied when the numerator and denominator have opposite signs. The critical points are x=0x=0 and 1+2x=0    x=1/21+2x=0 \implies x=-1/2. We analyze the sign of 1+2xx\frac{1 + 2x}{x} in the intervals (,1/2)(-\infty, -1/2), (1/2,0)(-1/2, 0), and (0,)(0, \infty).

  1. For x<1/2x < -1/2: Let x=1x=-1. 1+2(1)1=11=1>0\frac{1+2(-1)}{-1} = \frac{-1}{-1} = 1 > 0.
  2. For 1/2<x<0-1/2 < x < 0: Let x=1/4x=-1/4. 1+2(1/4)1/4=11/21/4=1/21/4=2<0\frac{1+2(-1/4)}{-1/4} = \frac{1-1/2}{-1/4} = \frac{1/2}{-1/4} = -2 < 0. This interval satisfies the inequality.
  3. For x>0x > 0: Let x=1x=1. 1+2(1)1=31=3>0\frac{1+2(1)}{1} = \frac{3}{1} = 3 > 0.

Therefore, the solution to the inequality is 1/2<x<0-1/2 < x < 0.