Solveeit Logo

Question

Question: $10\sin^4\theta + 15\cos^4\theta = 6$ $\frac{27\operatorname{cosec}^6\theta + 8\sec^6\theta}{16\se...

10sin4θ+15cos4θ=610\sin^4\theta + 15\cos^4\theta = 6

27cosec6θ+8sec6θ16sec8θ\frac{27\operatorname{cosec}^6\theta + 8\sec^6\theta}{16\sec^8\theta}

Answer

25\frac{2}{5}

Explanation

Solution

To solve the problem, we first need to find the values of sin2θ\sin^2\theta and cos2θ\cos^2\theta from the given equation, and then substitute them into the expression to be evaluated.

Step 1: Solve the given equation for sin2θ\sin^2\theta and cos2θ\cos^2\theta. The given equation is: 10sin4θ+15cos4θ=610\sin^4\theta + 15\cos^4\theta = 6

Divide the entire equation by cos4θ\cos^4\theta (assuming cosθ0\cos\theta \neq 0): 10sin4θcos4θ+15cos4θcos4θ=6cos4θ10\frac{\sin^4\theta}{\cos^4\theta} + 15\frac{\cos^4\theta}{\cos^4\theta} = \frac{6}{\cos^4\theta} 10tan4θ+15=6sec4θ10\tan^4\theta + 15 = 6\sec^4\theta

We know the identity sec2θ=1+tan2θ\sec^2\theta = 1 + \tan^2\theta. So, sec4θ=(1+tan2θ)2\sec^4\theta = (1 + \tan^2\theta)^2. Substitute this into the equation: 10tan4θ+15=6(1+tan2θ)210\tan^4\theta + 15 = 6(1 + \tan^2\theta)^2

Let x=tan2θx = \tan^2\theta. The equation becomes a quadratic in xx: 10x2+15=6(1+x)210x^2 + 15 = 6(1+x)^2 10x2+15=6(1+2x+x2)10x^2 + 15 = 6(1 + 2x + x^2) 10x2+15=6+12x+6x210x^2 + 15 = 6 + 12x + 6x^2 Rearrange the terms to form a standard quadratic equation: 4x212x+9=04x^2 - 12x + 9 = 0

This quadratic equation is a perfect square: (2x3)2=0(2x - 3)^2 = 0. Solving for xx: 2x3=02x - 3 = 0 2x=32x = 3 x=32x = \frac{3}{2}

So, we have tan2θ=32\tan^2\theta = \frac{3}{2}.

Now, we can find sin2θ\sin^2\theta and cos2θ\cos^2\theta using tan2θ=sin2θcos2θ\tan^2\theta = \frac{\sin^2\theta}{\cos^2\theta} and sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. From tan2θ=32\tan^2\theta = \frac{3}{2}: sin2θcos2θ=32\frac{\sin^2\theta}{\cos^2\theta} = \frac{3}{2} 2sin2θ=3cos2θ2\sin^2\theta = 3\cos^2\theta

Substitute cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta: 2sin2θ=3(1sin2θ)2\sin^2\theta = 3(1 - \sin^2\theta) 2sin2θ=33sin2θ2\sin^2\theta = 3 - 3\sin^2\theta 5sin2θ=35\sin^2\theta = 3 sin2θ=35\sin^2\theta = \frac{3}{5}

Now find cos2θ\cos^2\theta: cos2θ=1sin2θ=135=25\cos^2\theta = 1 - \sin^2\theta = 1 - \frac{3}{5} = \frac{2}{5}

Step 2: Evaluate the given expression. The expression to evaluate is: 27cosec6θ+8sec6θ16sec8θ\frac{27\operatorname{cosec}^6\theta + 8\sec^6\theta}{16\sec^8\theta}

We know that cosecθ=1sinθ\operatorname{cosec}\theta = \frac{1}{\sin\theta} and secθ=1cosθ\sec\theta = \frac{1}{\cos\theta}. So, cosec6θ=(sin2θ)3\operatorname{cosec}^6\theta = (\sin^2\theta)^{-3} and sec6θ=(cos2θ)3\sec^6\theta = (\cos^2\theta)^{-3} and sec8θ=(cos2θ)4\sec^8\theta = (\cos^2\theta)^{-4}.

Substitute the values of sin2θ=35\sin^2\theta = \frac{3}{5} and cos2θ=25\cos^2\theta = \frac{2}{5}: =27(35)3+8(25)316(25)4= \frac{27\left(\frac{3}{5}\right)^{-3} + 8\left(\frac{2}{5}\right)^{-3}}{16\left(\frac{2}{5}\right)^{-4}} =27(53)3+8(52)316(52)4= \frac{27\left(\frac{5}{3}\right)^3 + 8\left(\frac{5}{2}\right)^3}{16\left(\frac{5}{2}\right)^4} =27×5333+8×532316×5424= \frac{27 \times \frac{5^3}{3^3} + 8 \times \frac{5^3}{2^3}}{16 \times \frac{5^4}{2^4}} =27×12527+8×125816×62516= \frac{27 \times \frac{125}{27} + 8 \times \frac{125}{8}}{16 \times \frac{625}{16}} =125+125625= \frac{125 + 125}{625} =250625= \frac{250}{625}

Simplify the fraction: Divide both numerator and denominator by 25: =1025= \frac{10}{25} Divide both numerator and denominator by 5: =25= \frac{2}{5}

The final answer is 25\frac{2}{5}.

The final answer is 25\boxed{\frac{2}{5}}.

Explanation of the solution:

  1. Transform the given equation 10sin4θ+15cos4θ=610\sin^4\theta + 15\cos^4\theta = 6 into a quadratic equation in terms of tan2θ\tan^2\theta by dividing by cos4θ\cos^4\theta and using sec2θ=1+tan2θ\sec^2\theta = 1 + \tan^2\theta.
  2. Solve the quadratic equation (2tan2θ3)2=0(2\tan^2\theta - 3)^2 = 0 to find tan2θ=32\tan^2\theta = \frac{3}{2}.
  3. Use tan2θ=sin2θcos2θ\tan^2\theta = \frac{\sin^2\theta}{\cos^2\theta} and sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1 to determine sin2θ=35\sin^2\theta = \frac{3}{5} and cos2θ=25\cos^2\theta = \frac{2}{5}.
  4. Substitute these values into the expression 27cosec6θ+8sec6θ16sec8θ\frac{27\operatorname{cosec}^6\theta + 8\sec^6\theta}{16\sec^8\theta}, rewriting terms as powers of sin2θ\sin^2\theta and cos2θ\cos^2\theta.
  5. Evaluate the numerical expression to get 250625\frac{250}{625}, which simplifies to 25\frac{2}{5}.

Answer: 25\frac{2}{5}