Solveeit Logo

Question

Question: There is a double-layer cylindrical capacitor whose parameters are shown in Fig. 3.16. The breakdown...

There is a double-layer cylindrical capacitor whose parameters are shown in Fig. 3.16. The breakdown field strength values for these dielectrics are equal to E1E_1 and E2E_2 respectively. What is the breakdown voltage of this capacitor if ϵ1R1E1<ϵ2R2E2\epsilon_1 R_1 E_1 < \epsilon_2 R_2 E_2?

Answer

R1E1lnR2R1+ϵ1R1E1ϵ2lnR3R2R_1 E_1 \ln\frac{R_2}{R_1} + \frac{\epsilon_1 R_1 E_1}{\epsilon_2} \ln\frac{R_3}{R_2}

Explanation

Solution

The electric field at a distance rr from the axis in the region R1<r<R2R_1 < r < R_2 is given by E1(r)=λ2πϵ1rE_1(r) = \frac{\lambda}{2\pi \epsilon_1 r}, where λ\lambda is the charge per unit length on the inner conductor. The maximum electric field in this region is at r=R1r=R_1, E1,max=λ2πϵ1R1E_{1,max} = \frac{\lambda}{2\pi \epsilon_1 R_1}. Breakdown occurs in this layer when E1,max=E1E_{1,max} = E_1, which corresponds to a charge per unit length λc1=2πϵ1R1E1\lambda_{c1} = 2\pi \epsilon_1 R_1 E_1.

The electric field at a distance rr from the axis in the region R2<r<R3R_2 < r < R_3 is given by E2(r)=λ2πϵ2rE_2(r) = \frac{\lambda}{2\pi \epsilon_2 r}. The maximum electric field in this region is at r=R2r=R_2, E2,max=λ2πϵ2R2E_{2,max} = \frac{\lambda}{2\pi \epsilon_2 R_2}. Breakdown occurs in this layer when E2,max=E2E_{2,max} = E_2, which corresponds to a charge per unit length λc2=2πϵ2R2E2\lambda_{c2} = 2\pi \epsilon_2 R_2 E_2.

The breakdown of the capacitor occurs when the applied voltage results in a charge per unit length λ\lambda that reaches the minimum of λc1\lambda_{c1} and λc2\lambda_{c2}. Given the condition ϵ1R1E1<ϵ2R2E2\epsilon_1 R_1 E_1 < \epsilon_2 R_2 E_2, we have 2πϵ1R1E1<2πϵ2R2E22\pi \epsilon_1 R_1 E_1 < 2\pi \epsilon_2 R_2 E_2, so λc1<λc2\lambda_{c1} < \lambda_{c2}. Therefore, the breakdown occurs when λ=λmax=λc1=2πϵ1R1E1\lambda = \lambda_{max} = \lambda_{c1} = 2\pi \epsilon_1 R_1 E_1.

The potential difference between the inner and outer conductors is given by:

V=R1R3E(r)dr=R1R2E1(r)dr+R2R3E2(r)drV = \int_{R_1}^{R_3} E(r) dr = \int_{R_1}^{R_2} E_1(r) dr + \int_{R_2}^{R_3} E_2(r) dr

V=R1R2λ2πϵ1rdr+R2R3λ2πϵ2rdrV = \int_{R_1}^{R_2} \frac{\lambda}{2\pi \epsilon_1 r} dr + \int_{R_2}^{R_3} \frac{\lambda}{2\pi \epsilon_2 r} dr

V=λ2πϵ1[lnr]R1R2+λ2πϵ2[lnr]R2R3V = \frac{\lambda}{2\pi \epsilon_1} [\ln r]_{R_1}^{R_2} + \frac{\lambda}{2\pi \epsilon_2} [\ln r]_{R_2}^{R_3}

V=λ2π(1ϵ1ln(R2R1)+1ϵ2ln(R3R2))V = \frac{\lambda}{2\pi} \left( \frac{1}{\epsilon_1} \ln(\frac{R_2}{R_1}) + \frac{1}{\epsilon_2} \ln(\frac{R_3}{R_2}) \right)

The breakdown voltage is the voltage when λ=λmax=2πϵ1R1E1\lambda = \lambda_{max} = 2\pi \epsilon_1 R_1 E_1.

Vbreakdown=2πϵ1R1E12π(1ϵ1ln(R2R1)+1ϵ2ln(R3R2))V_{breakdown} = \frac{2\pi \epsilon_1 R_1 E_1}{2\pi} \left( \frac{1}{\epsilon_1} \ln(\frac{R_2}{R_1}) + \frac{1}{\epsilon_2} \ln(\frac{R_3}{R_2}) \right)

Vbreakdown=ϵ1R1E1(1ϵ1ln(R2R1)+1ϵ2ln(R3R2))V_{breakdown} = \epsilon_1 R_1 E_1 \left( \frac{1}{\epsilon_1} \ln(\frac{R_2}{R_1}) + \frac{1}{\epsilon_2} \ln(\frac{R_3}{R_2}) \right)

Vbreakdown=R1E1ln(R2R1)+ϵ1R1E1ϵ2ln(R3R2)V_{breakdown} = R_1 E_1 \ln(\frac{R_2}{R_1}) + \frac{\epsilon_1 R_1 E_1}{\epsilon_2} \ln(\frac{R_3}{R_2})