Solveeit Logo

Question

Question: The gap between the plates of a parallel-plate capacitor is filled with isotropic dielectric whose p...

The gap between the plates of a parallel-plate capacitor is filled with isotropic dielectric whose permittivity ϵ\epsilon varies linearly from ϵ1\epsilon_1 to ϵ2\epsilon_2 (ϵ2>ϵ1\epsilon_2 > \epsilon_1) in the direction perpendicular to the plates. The area of each plate equals SS, the separation between the plates is equal to dd. Find

a) the capacitance of the capacitor;

b) the space density of the bound charges as a function of ϵ\epsilon if the charge of the capacitor is qq and the field E\mathbf{E} in it is directed toward

Answer

a) C=S(ϵ2ϵ1)dln(ϵ2ϵ1)C = \frac{S(\epsilon_2 - \epsilon_1)}{d \ln\left(\frac{\epsilon_2}{\epsilon_1}\right)}, b) ρb(ϵ)=qϵ0(ϵ2ϵ1)Sdϵ2\rho_b(\epsilon) = -\frac{q \epsilon_0 (\epsilon_2 - \epsilon_1)}{S d \epsilon^2}

Explanation

Solution

The problem involves a parallel-plate capacitor with a non-uniform dielectric. The permittivity varies linearly between the plates.

a) Capacitance of the capacitor: Let the plates be parallel to the xy-plane, located at z=0 and z=d. Let the area of each plate be S. The permittivity ϵ\epsilon varies linearly from ϵ1\epsilon_1 at one plate (say z=0) to ϵ2\epsilon_2 at the other plate (z=d). The linear variation of permittivity with position z is given by: ϵ(z)=ϵ1+ϵ2ϵ1dz\epsilon(z) = \epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z. We can consider the capacitor as being composed of infinitesimally thin layers of thickness dz, stacked in series along the z-direction. Each layer at position z has an area S and permittivity ϵ(z)\epsilon(z). The capacitance of such a thin layer is dC=ϵ(z)SdzdC = \frac{\epsilon(z) S}{dz}. Since these layers are in series, the reciprocal of the total capacitance C is the sum of the reciprocals of the capacitances of the layers: 1C=0d1dC=0ddzϵ(z)S\frac{1}{C} = \int_0^d \frac{1}{dC} = \int_0^d \frac{dz}{\epsilon(z) S}. Substitute the expression for ϵ(z)\epsilon(z): 1C=0ddz(ϵ1+ϵ2ϵ1dz)S=1S0ddzϵ1+ϵ2ϵ1dz\frac{1}{C} = \int_0^d \frac{dz}{(\epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z) S} = \frac{1}{S} \int_0^d \frac{dz}{\epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z}. Let u=ϵ1+ϵ2ϵ1dzu = \epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z. Then du=ϵ2ϵ1ddzdu = \frac{\epsilon_2 - \epsilon_1}{d} dz, so dz=dϵ2ϵ1dudz = \frac{d}{\epsilon_2 - \epsilon_1} du. When z=0z=0, u=ϵ1u = \epsilon_1. When z=dz=d, u=ϵ1+ϵ2ϵ1dd=ϵ1+ϵ2ϵ1=ϵ2u = \epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} d = \epsilon_1 + \epsilon_2 - \epsilon_1 = \epsilon_2. The integral becomes: 1C=1Sϵ1ϵ21udϵ2ϵ1du=dS(ϵ2ϵ1)ϵ1ϵ21udu\frac{1}{C} = \frac{1}{S} \int_{\epsilon_1}^{\epsilon_2} \frac{1}{u} \frac{d}{\epsilon_2 - \epsilon_1} du = \frac{d}{S(\epsilon_2 - \epsilon_1)} \int_{\epsilon_1}^{\epsilon_2} \frac{1}{u} du. 1C=dS(ϵ2ϵ1)[lnu]ϵ1ϵ2=dS(ϵ2ϵ1)(lnϵ2lnϵ1)=dS(ϵ2ϵ1)ln(ϵ2ϵ1)\frac{1}{C} = \frac{d}{S(\epsilon_2 - \epsilon_1)} [\ln|u|]_{\epsilon_1}^{\epsilon_2} = \frac{d}{S(\epsilon_2 - \epsilon_1)} (\ln \epsilon_2 - \ln \epsilon_1) = \frac{d}{S(\epsilon_2 - \epsilon_1)} \ln\left(\frac{\epsilon_2}{\epsilon_1}\right). The capacitance is C=S(ϵ2ϵ1)dln(ϵ2ϵ1)C = \frac{S(\epsilon_2 - \epsilon_1)}{d \ln\left(\frac{\epsilon_2}{\epsilon_1}\right)}. This formula assumes ϵ1\epsilon_1 and ϵ2\epsilon_2 are absolute permittivities. If they were relative permittivities, the absolute permittivity would be ϵ(z)=ϵ0ϵr(z)\epsilon(z) = \epsilon_0 \epsilon_r(z), and the capacitance would be C=ϵ0S(ϵ2ϵ1)dln(ϵ2ϵ1)C = \frac{\epsilon_0 S(\epsilon_2 - \epsilon_1)}{d \ln\left(\frac{\epsilon_2}{\epsilon_1}\right)}. Based on the phrasing "permittivity ϵ\epsilon", we assume ϵ1,ϵ2\epsilon_1, \epsilon_2 are absolute permittivities.

b) Space density of bound charges: The space density of bound charges ρb\rho_b is related to the polarization P\mathbf{P} by ρb=P\rho_b = -\nabla \cdot \mathbf{P}. In a linear, isotropic dielectric, the polarization is related to the electric field E\mathbf{E} by P=ϵ0χeE=ϵ0(ϵr1)E=(ϵϵ0)E\mathbf{P} = \epsilon_0 \chi_e \mathbf{E} = \epsilon_0 (\epsilon_r - 1) \mathbf{E} = (\epsilon - \epsilon_0) \mathbf{E}, where χe\chi_e is the electric susceptibility and ϵr=ϵ/ϵ0\epsilon_r = \epsilon/\epsilon_0 is the relative permittivity. The electric field E\mathbf{E} inside the parallel-plate capacitor is directed perpendicular to the plates. Let the field be in the +z direction (from the plate with charge +q to the plate with charge -q). The problem states the field is directed "toward", which is ambiguous. Let's assume the standard convention where the field points from positive to negative charge, so if the charge is q, the field is directed from the positive plate to the negative plate. Let the positive plate be at z=0 and the negative plate at z=d. Then E=E(z)z^\mathbf{E} = E(z) \hat{\mathbf{z}}. The displacement field D\mathbf{D} is uniform within the dielectric and is related to the free charge density σf=q/S\sigma_f = q/S on the plates by D=σf=q/SD = \sigma_f = q/S. The relationship between D\mathbf{D} and E\mathbf{E} is D=ϵE\mathbf{D} = \epsilon \mathbf{E}. So, E(z)=D/ϵ(z)=q/Sϵ(z)E(z) = D/\epsilon(z) = \frac{q/S}{\epsilon(z)}. E(z)=qSϵ(z)z^\mathbf{E}(z) = \frac{q}{S \epsilon(z)} \hat{\mathbf{z}}. The polarization is P(z)=(ϵ(z)ϵ0)E(z)=(ϵ(z)ϵ0)qSϵ(z)z^=qS(1ϵ0ϵ(z))z^\mathbf{P}(z) = (\epsilon(z) - \epsilon_0) \mathbf{E}(z) = (\epsilon(z) - \epsilon_0) \frac{q}{S \epsilon(z)} \hat{\mathbf{z}} = \frac{q}{S} \left(1 - \frac{\epsilon_0}{\epsilon(z)}\right) \hat{\mathbf{z}}. The space density of bound charges is ρb=P\rho_b = -\nabla \cdot \mathbf{P}. Since P\mathbf{P} is in the z-direction and depends only on z, the divergence is Pzz\frac{\partial P_z}{\partial z}: ρb=z[qS(1ϵ0ϵ(z))]=qSz(1ϵ0ϵ(z)1)\rho_b = -\frac{\partial}{\partial z} \left[ \frac{q}{S} \left(1 - \frac{\epsilon_0}{\epsilon(z)}\right) \right] = -\frac{q}{S} \frac{\partial}{\partial z} \left(1 - \epsilon_0 \epsilon(z)^{-1}\right). ρb=qS(ϵ0)(1)ϵ(z)2dϵdz=qϵ0S[ϵ(z)]2dϵdz\rho_b = -\frac{q}{S} (-\epsilon_0) (-1) \epsilon(z)^{-2} \frac{d\epsilon}{dz} = -\frac{q \epsilon_0}{S [\epsilon(z)]^2} \frac{d\epsilon}{dz}. From the linear variation ϵ(z)=ϵ1+ϵ2ϵ1dz\epsilon(z) = \epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z, we have dϵdz=ϵ2ϵ1d\frac{d\epsilon}{dz} = \frac{\epsilon_2 - \epsilon_1}{d}. So, ρb(z)=qϵ0S[ϵ(z)]2ϵ2ϵ1d\rho_b(z) = -\frac{q \epsilon_0}{S [\epsilon(z)]^2} \frac{\epsilon_2 - \epsilon_1}{d}. We are asked for the space density as a function of ϵ\epsilon. Since ϵ\epsilon varies linearly with z, z can be expressed in terms of ϵ\epsilon: z=dϵ2ϵ1(ϵϵ1)z = \frac{d}{\epsilon_2 - \epsilon_1} (\epsilon - \epsilon_1). So specifying z is equivalent to specifying ϵ\epsilon. The expression for ρb\rho_b already has ϵ(z)\epsilon(z) in the denominator. We can just write ϵ\epsilon instead of ϵ(z)\epsilon(z) to indicate the local value of permittivity. ρb(ϵ)=qϵ0(ϵ2ϵ1)Sdϵ2\rho_b(\epsilon) = -\frac{q \epsilon_0 (\epsilon_2 - \epsilon_1)}{S d \epsilon^2}. The direction of E\mathbf{E} is assumed to be from z=0 to z=d. If the field were directed toward the other plate, the sign of E\mathbf{E} would be reversed, but the sign of q would also be reversed (assuming q is the charge on the plate where the field originates), leaving the expression for ρb\rho_b unchanged.

Final check: The total bound charge qb=ρbdV=0dρb(z)Sdz=0dqϵ0S[ϵ(z)]2ϵ2ϵ1dSdzq_b = \int \rho_b dV = \int_0^d \rho_b(z) S dz = \int_0^d -\frac{q \epsilon_0}{S [\epsilon(z)]^2} \frac{\epsilon_2 - \epsilon_1}{d} S dz. qb=qϵ0(ϵ2ϵ1)d0ddz[ϵ1+ϵ2ϵ1dz]2q_b = -\frac{q \epsilon_0 (\epsilon_2 - \epsilon_1)}{d} \int_0^d \frac{dz}{[\epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z]^2}. Let u=ϵ1+ϵ2ϵ1dzu = \epsilon_1 + \frac{\epsilon_2 - \epsilon_1}{d} z, dz=dϵ2ϵ1dudz = \frac{d}{\epsilon_2 - \epsilon_1} du. qb=qϵ0(ϵ2ϵ1)dϵ1ϵ21u2dϵ2ϵ1du=qϵ0ϵ1ϵ2u2duq_b = -\frac{q \epsilon_0 (\epsilon_2 - \epsilon_1)}{d} \int_{\epsilon_1}^{\epsilon_2} \frac{1}{u^2} \frac{d}{\epsilon_2 - \epsilon_1} du = -q \epsilon_0 \int_{\epsilon_1}^{\epsilon_2} u^{-2} du. qb=qϵ0[u1]ϵ1ϵ2=qϵ0(1ϵ2+1ϵ1)=qϵ0(1ϵ21ϵ1)=qϵ0ϵ1ϵ2ϵ1ϵ2q_b = -q \epsilon_0 [-u^{-1}]_{\epsilon_1}^{\epsilon_2} = -q \epsilon_0 (-\frac{1}{\epsilon_2} + \frac{1}{\epsilon_1}) = q \epsilon_0 \left(\frac{1}{\epsilon_2} - \frac{1}{\epsilon_1}\right) = q \epsilon_0 \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 \epsilon_2}. The bound surface charge density on the plates are σb1=P(0)(z^)\sigma_{b1} = \mathbf{P}(0) \cdot (-\hat{\mathbf{z}}) and σb2=P(d)(z^)\sigma_{b2} = \mathbf{P}(d) \cdot (\hat{\mathbf{z}}). P(z)=qS(1ϵ0ϵ(z))z^\mathbf{P}(z) = \frac{q}{S} (1 - \frac{\epsilon_0}{\epsilon(z)}) \hat{\mathbf{z}}. σb1=qS(1ϵ0ϵ1)(1)=qS(1ϵ0ϵ1)\sigma_{b1} = \frac{q}{S} (1 - \frac{\epsilon_0}{\epsilon_1}) (-1) = -\frac{q}{S} (1 - \frac{\epsilon_0}{\epsilon_1}). σb2=qS(1ϵ0ϵ2)\sigma_{b2} = \frac{q}{S} (1 - \frac{\epsilon_0}{\epsilon_2}). The total bound charge is Qb=qb+σb1S+σb2SQ_b = q_b + \sigma_{b1} S + \sigma_{b2} S. Qb=qϵ0ϵ1ϵ2ϵ1ϵ2q(1ϵ0ϵ1)+q(1ϵ0ϵ2)Q_b = q \epsilon_0 \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 \epsilon_2} - q (1 - \frac{\epsilon_0}{\epsilon_1}) + q (1 - \frac{\epsilon_0}{\epsilon_2}). Qb=qϵ0ϵ1ϵ2ϵ1ϵ2q+qϵ0ϵ1+qqϵ0ϵ2=qϵ0ϵ1ϵ2ϵ1ϵ2+qϵ0(1ϵ11ϵ2)Q_b = q \epsilon_0 \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 \epsilon_2} - q + \frac{q \epsilon_0}{\epsilon_1} + q - \frac{q \epsilon_0}{\epsilon_2} = q \epsilon_0 \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 \epsilon_2} + q \epsilon_0 (\frac{1}{\epsilon_1} - \frac{1}{\epsilon_2}). Qb=qϵ0ϵ1ϵ2ϵ1ϵ2+qϵ0ϵ2ϵ1ϵ1ϵ2=0Q_b = q \epsilon_0 \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 \epsilon_2} + q \epsilon_0 \frac{\epsilon_2 - \epsilon_1}{\epsilon_1 \epsilon_2} = 0. The total bound charge in the volume and on the surfaces must sum to zero for a neutral dielectric. This confirms the expression for ρb\rho_b.