Solveeit Logo

Question

Question: Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1)x^2+(1-\sqrt{1+a})x+\s...

Let α(a)\alpha(a) and β(a)\beta(a) be the roots of the equation (1+a31)x2+(11+a)x+1+a3=1+a6(\sqrt[3]{1+a}-1)x^2+(1-\sqrt{1+a})x+\sqrt[3]{1+a}=\sqrt[6]{1+a}, where a>0a>0, α(a)>β(a)\alpha(a) > \beta(a). If minimum value of expression f(a)=α(a)+12β(a)+4α(a)(3β(a))2,a>0f(a)=\alpha(a)+12\beta(a)+\frac{4}{\alpha(a)(3\beta(a))^2},a>0 is m, then value of [m] is

[Note: [m] denotes the largest integer less than or equal to m]

Answer

8

Explanation

Solution

Let y=1+a6y = \sqrt[6]{1+a}. Since a>0a>0, y>1y>1. The given equation can be written as: (y21)x2+(1y3)x+y2=y(y^2-1)x^2 + (1-y^3)x + y^2 = y (y21)x2(y31)x+(y2y)=0(y^2-1)x^2 - (y^3-1)x + (y^2-y) = 0 Dividing by y1y-1 (since y>1y>1, y10y-1 \neq 0): (y+1)x2(y2+y+1)x+y=0(y+1)x^2 - (y^2+y+1)x + y = 0 We observe that x=yx=y is a root. The product of roots is αβ=yy+1\alpha \beta = \frac{y}{y+1}. If α=y\alpha = y, then β=1y+1\beta = \frac{1}{y+1}. Since y>1y>1, we have y>1y+1y > \frac{1}{y+1}, so α(a)=y=1+a6\alpha(a) = y = \sqrt[6]{1+a} and β(a)=1y+1=11+a6+1\beta(a) = \frac{1}{y+1} = \frac{1}{\sqrt[6]{1+a}+1}.

The expression to minimize is f(a)=α(a)+12β(a)+4α(a)(3β(a))2f(a)=\alpha(a)+12\beta(a)+\frac{4}{\alpha(a)(3\beta(a))^2}. Substituting α=y\alpha=y and β=1y+1\beta=\frac{1}{y+1}: f(a)=y+12(1y+1)+4y(31y+1)2f(a) = y + 12\left(\frac{1}{y+1}\right) + \frac{4}{y\left(3\cdot\frac{1}{y+1}\right)^2} f(a)=y+12y+1+4(y+1)29yf(a) = y + \frac{12}{y+1} + \frac{4(y+1)^2}{9y}

Let g(y)=y+12y+1+4(y+1)29yg(y) = y + \frac{12}{y+1} + \frac{4(y+1)^2}{9y} for y>1y>1. To find the minimum value, we compute the derivative with respect to yy: g(y)=112(y+1)2+492(y+1)y(y+1)2y2g'(y) = 1 - \frac{12}{(y+1)^2} + \frac{4}{9} \cdot \frac{2(y+1)y - (y+1)^2}{y^2} g(y)=112(y+1)2+49(y+1)(2y(y+1))y2g'(y) = 1 - \frac{12}{(y+1)^2} + \frac{4}{9} \cdot \frac{(y+1)(2y - (y+1))}{y^2} g(y)=112(y+1)2+49(y+1)(y1)y2g'(y) = 1 - \frac{12}{(y+1)^2} + \frac{4}{9} \cdot \frac{(y+1)(y-1)}{y^2} This derivative calculation seems complicated. Let's re-evaluate g(y)g(y) first. g(y)=y+12y+1+4(y2+2y+1)9y=y+12y+1+4y9+89+49yg(y) = y + \frac{12}{y+1} + \frac{4(y^2+2y+1)}{9y} = y + \frac{12}{y+1} + \frac{4y}{9} + \frac{8}{9} + \frac{4}{9y} g(y)=13y9+12y+1+49y+89g(y) = \frac{13y}{9} + \frac{12}{y+1} + \frac{4}{9y} + \frac{8}{9}. Now, g(y)=13912(y+1)249y2g'(y) = \frac{13}{9} - \frac{12}{(y+1)^2} - \frac{4}{9y^2}. Setting g(y)=0g'(y)=0: 139=12(y+1)2+49y2\frac{13}{9} = \frac{12}{(y+1)^2} + \frac{4}{9y^2}. By inspection, y=2y=2 satisfies this equation: 139=12(2+1)2+49(22)=129+436=129+19=139\frac{13}{9} = \frac{12}{(2+1)^2} + \frac{4}{9(2^2)} = \frac{12}{9} + \frac{4}{36} = \frac{12}{9} + \frac{1}{9} = \frac{13}{9}. The second derivative g(y)=24(y+1)3+89y3g''(y) = \frac{24}{(y+1)^3} + \frac{8}{9y^3}. For y>1y>1, g(y)>0g''(y)>0, indicating a minimum. The minimum value occurs at y=2y=2. m=g(2)=2+122+1+4(2+1)29(2)=2+123+4(9)18=2+4+2=8m = g(2) = 2 + \frac{12}{2+1} + \frac{4(2+1)^2}{9(2)} = 2 + \frac{12}{3} + \frac{4(9)}{18} = 2 + 4 + 2 = 8. The value of [m]=[8]=8[m] = [8] = 8.