Solveeit Logo

Question

Mathematics Question on Binomial theorem

(100)50+(99)50(100)^{50} + (99)^{50}

A

<(101)50< (101)^{50}

B

=(101)50= (101)^{50}

C

>(101)50> (101)^{50}

D

>(101)51> (101)^{51}

Answer

<(101)50< (101)^{50}

Explanation

Solution

Since, (101)50=(100+1)50(101)^{50} = (100 + 1)^{50} =10050+50C110049+50C210048++1(i)= 100^{50} + \,^{50}C_{1}\,100^{49} + \,^{50}C_{2}\,100^{48} + \ldots + 1\quad\ldots\left(i\right) and (99)50=(1001)50\left(99\right)^{50} = \left(100-1\right)^{50} =1005050C110049+50C210048...+1(ii)= 100^{50 }- \,^{50}C_{1}\,100^{49} + \,^{50}C_{2}\,100^{48} -... +1 \quad\ldots\left(ii\right) On subtracting (ii)\left(ii\right) from (i)\left(i\right), we get \left(101\right)^{50}-\left(99\right)^{50}= 2\left\\{^{50}C_{1}\,100^{49}+\,^{50}C_{3}\,100^{47}+\ldots\right\\} =2×50C110049= 2\times\,^{50}C_{1}\,100^{49} +(2×50C3×10047+...)+\left(2 \times \,^{50}C_{3} \times 100^{47}+...\right) =100×10049+a=100 \times100^{49}+a positive number >10050> 100^{50} (101)50>(100)50+(99)50\Rightarrow \left(101\right)^{50} > \left(100\right)^{50} + \left(99\right)^{50}