Question
Mathematics Question on Binomial theorem
(100)50+(99)50
A
<(101)50
B
=(101)50
C
>(101)50
D
>(101)51
Answer
<(101)50
Explanation
Solution
Since, (101)50=(100+1)50 =10050+50C110049+50C210048+…+1…(i) and (99)50=(100−1)50 =10050−50C110049+50C210048−...+1…(ii) On subtracting (ii) from (i), we get \left(101\right)^{50}-\left(99\right)^{50}= 2\left\\{^{50}C_{1}\,100^{49}+\,^{50}C_{3}\,100^{47}+\ldots\right\\} =2×50C110049 +(2×50C3×10047+...) =100×10049+a positive number >10050 ⇒(101)50>(100)50+(99)50