Question
Question: Real numbers $x, y, z$ satisfy $$x + xy + xyz = 1, \quad y + yz + xyz = 2, \quad z + xz + xyz = 4.$$...
Real numbers x,y,z satisfy x+xy+xyz=1,y+yz+xyz=2,z+xz+xyz=4. The largest possible value of xyz is da+bc, where a,b,c,d are integers, d is positive, c is square-free, and gcd(a,b,d)=1. Find 1000a+100b+10c+d.

5272
Solution
The given system of equations is:
- x+xy+xyz=1
- y+yz+xyz=2
- z+xz+xyz=4
Let P=xyz. We want to find the largest possible value of P. Rewrite the equations in terms of P:
- x(1+y)+P=1⟹x(1+y)=1−P
- y(1+z)+P=2⟹y(1+z)=2−P
- z(1+x)+P=4⟹z(1+x)=4−P
Multiply these three modified equations: x(1+y)⋅y(1+z)⋅z(1+x)=(1−P)(2−P)(4−P) xyz(1+x)(1+y)(1+z)=(1−P)(2−P)(4−P) Substitute xyz=P: P(1+x)(1+y)(1+z)=(1−P)(2−P)(4−P)
Now, let's expand the term (1+x)(1+y)(1+z): (1+x)(1+y)(1+z)=(1+x+y+xy)(1+z) =1+z+x+xz+y+yz+xy+xyz =1+(x+y+z)+(xy+yz+xz)+xyz
Let S1=x+y+z and S2=xy+yz+xz. Also, xyz=P. So, (1+x)(1+y)(1+z)=1+S1+S2+P.
Now, let's sum the three modified equations: (x(1+y))+(y(1+z))+(z(1+x))=(1−P)+(2−P)+(4−P) x+xy+y+yz+z+xz=7−3P Rearranging the terms: (x+y+z)+(xy+yz+xz)=7−3P S1+S2=7−3P.
Substitute this into the equation P(1+x)(1+y)(1+z)=(1−P)(2−P)(4−P): P(1+(S1+S2)+P)=(1−P)(2−P)(4−P) P(1+(7−3P)+P)=(1−P)(2−P)(4−P) P(8−2P)=(1−P)(2−P)(4−P) 2P(4−P)=(1−P)(2−P)(4−P)
We can see that (4−P) is a common factor. Case 1: 4−P=0⟹P=4. If P=4, the equation becomes 2P(0)=(1−P)(2−P)(0), which is 0=0. So P=4 is a valid solution.
Case 2: 4−P=0. We can divide both sides by (4−P): 2P=(1−P)(2−P) 2P=2−P−2P+P2 2P=P2−3P+2 Rearrange into a quadratic equation: P2−5P+2=0
Solve for P using the quadratic formula P=2a−b±b2−4ac: P=2(1)−(−5)±(−5)2−4(1)(2) P=25±25−8 P=25±17
So, the three possible values for P=xyz are:
- P1=4
- P2=25+17
- P3=25−17
To find the largest possible value, we compare these numbers. We know that 4<17<5 (since 42=16 and 52=25). Approximate value of 17≈4.12. P1=4 P2=25+17≈25+4.12=29.12=4.56 P3=25−17≈25−4.12=20.88=0.44
Comparing these values, the largest value is P2=25+17.
We need to confirm that real numbers x,y,z exist for this value of P. Let A=1+x, B=1+y, C=1+z. We have x(1+y)=1−P, y(1+z)=2−P, z(1+x)=4−P. This can be written as (A−1)B=1−P, (B−1)C=2−P, (C−1)A=4−P. For P=25+17: 1−P=1−25+17=22−5−17=2−3−17 2−P=2−25+17=24−5−17=2−1−17 4−P=4−25+17=28−5−17=23−17
Notice that 1−P<0, 2−P<0, 4−P<0 (since 17≈4.12). So x(1+y)<0, y(1+z)<0, z(1+x)<0. This implies x and 1+y have opposite signs, y and 1+z have opposite signs, z and 1+x have opposite signs. For example, if x>0, then 1+y<0⟹y<−1. If y<−1, then 1+z>0⟹z>−1. If z>−1, then 1+x<0⟹x<−1. This contradicts x>0. So x,y,z must all be negative. If x<0, then 1+y>0⟹y>−1. If y>−1, then 1+z<0⟹z<−1. If z<−1, then 1+x>0⟹x>−1. This contradicts x<0. This means that x,y,z cannot be all positive or all negative. The variables x,y,z are real numbers. Let's check the signs of x,y,z. x(1+y)=2−3−17<0 y(1+z)=2−1−17<0 z(1+x)=23−17<0
The product of these three is xyz(1+x)(1+y)(1+z)=(1−P)(2−P)(4−P). P⋅(1+x)(1+y)(1+z)=(2−3−17)(2−1−17)(23−17) P⋅(1+x)(1+y)(1+z)=81(−3−17)(−1−17)(3−17) P⋅(1+x)(1+y)(1+z)=81(17+3)(17+1)(17−3) P⋅(1+x)(1+y)(1+z)=81((17)2−32)(17+1) P⋅(1+x)(1+y)(1+z)=81(17−9)(17+1) P⋅(1+x)(1+y)(1+z)=81(8)(17+1) P⋅(1+x)(1+y)(1+z)=17+1
Since P=25+17>0, it implies that (1+x)(1+y)(1+z) must be positive. 25+17(1+x)(1+y)(1+z)=17+1>0. So (1+x)(1+y)(1+z)=5+172(17+1)=(5+17)(5−17)2(17+1)(5−17)=25−172(517−17+5−17)=82(417−12)=44(17−3)=17−3>0 (since 17≈4.12). So (1+x)(1+y)(1+z) is positive.
The existence of real roots x,y,z is guaranteed by the fact that the polynomial Q(t)=t3−S1t2+S2t−P=0 has real roots. We have P=25+17. S1+S2=7−3P=7−3(25+17)=214−15−317=2−1−317. Also, P(1+S1+S2+P)=(1−P)(2−P)(4−P) implies P(1+(7−3P)+P)=(1−P)(2−P)(4−P) which simplified to P2−5P+2=0. The values of x,y,z are roots of a cubic equation. The problem statement implies that such real numbers x,y,z exist.
The largest possible value of xyz is 25+17. This is in the form da+bc. a=5, b=1, c=17, d=2. Check conditions: a,b,c,d are integers: Yes (5,1,17,2). d is positive: Yes (2>0). c is square-free: Yes (17 is a prime number, so it's square-free). gcd(a,b,d)=gcd(5,1,2). gcd(5,1,2)=1. Yes.
We need to find 1000a+100b+10c+d. 1000(5)+100(1)+10(17)+2 =5000+100+170+2 =5272
The final answer is 5272.
Explanation of the solution:
- Rewrite the given equations x+xy+xyz=1, y+yz+xyz=2, z+xz+xyz=4 by letting P=xyz. This yields x(1+y)=1−P, y(1+z)=2−P, z(1+x)=4−P.
- Multiply these three new equations: xyz(1+x)(1+y)(1+z)=(1−P)(2−P)(4−P). Substitute xyz=P.
- Expand (1+x)(1+y)(1+z)=1+(x+y+z)+(xy+yz+xz)+xyz.
- Sum the three new equations: (x+xy)+(y+yz)+(z+xz)=(1−P)+(2−P)+(4−P), which simplifies to (x+y+z)+(xy+yz+xz)=7−3P.
- Substitute the sum from step 4 into the expanded product from step 3: P(1+(7−3P)+P)=(1−P)(2−P)(4−P).
- Simplify the equation: P(8−2P)=(1−P)(2−P)(4−P), which becomes 2P(4−P)=(1−P)(2−P)(4−P).
- Solve for P. One solution is P=4. If P=4, divide by (4−P) to get 2P=(1−P)(2−P), which simplifies to the quadratic equation P2−5P+2=0.
- Solve the quadratic equation using the quadratic formula to get P=25±17.
- Compare the three possible values for P: 4, 25+17, and 25−17. The largest value is 25+17.
- Identify a,b,c,d from the expression 25+17 as a=5,b=1,c=17,d=2. Verify that these values satisfy the given conditions.
- Calculate the final expression 1000a+100b+10c+d=1000(5)+100(1)+10(17)+2=5000+100+170+2=5272.