Solveeit Logo

Question

Question: Real numbers $x, y, z$ satisfy $$x + xy + xyz = 1, \quad y + yz + xyz = 2, \quad z + xz + xyz = 4.$$...

Real numbers x,y,zx, y, z satisfy x+xy+xyz=1,y+yz+xyz=2,z+xz+xyz=4.x + xy + xyz = 1, \quad y + yz + xyz = 2, \quad z + xz + xyz = 4. The largest possible value of xyzxyz is a+bcd\frac{a+b\sqrt{c}}{d}, where a,b,c,da, b, c, d are integers, dd is positive, cc is square-free, and gcd(a,b,d)=1(a, b, d) = 1. Find 1000a+100b+10c+d1000a + 100b + 10c + d.

Answer

5272

Explanation

Solution

The given system of equations is:

  1. x+xy+xyz=1x + xy + xyz = 1
  2. y+yz+xyz=2y + yz + xyz = 2
  3. z+xz+xyz=4z + xz + xyz = 4

Let P=xyzP = xyz. We want to find the largest possible value of PP. Rewrite the equations in terms of PP:

  1. x(1+y)+P=1    x(1+y)=1Px(1+y) + P = 1 \implies x(1+y) = 1-P
  2. y(1+z)+P=2    y(1+z)=2Py(1+z) + P = 2 \implies y(1+z) = 2-P
  3. z(1+x)+P=4    z(1+x)=4Pz(1+x) + P = 4 \implies z(1+x) = 4-P

Multiply these three modified equations: x(1+y)y(1+z)z(1+x)=(1P)(2P)(4P)x(1+y) \cdot y(1+z) \cdot z(1+x) = (1-P)(2-P)(4-P) xyz(1+x)(1+y)(1+z)=(1P)(2P)(4P)xyz (1+x)(1+y)(1+z) = (1-P)(2-P)(4-P) Substitute xyz=Pxyz = P: P(1+x)(1+y)(1+z)=(1P)(2P)(4P)P(1+x)(1+y)(1+z) = (1-P)(2-P)(4-P)

Now, let's expand the term (1+x)(1+y)(1+z)(1+x)(1+y)(1+z): (1+x)(1+y)(1+z)=(1+x+y+xy)(1+z)(1+x)(1+y)(1+z) = (1+x+y+xy)(1+z) =1+z+x+xz+y+yz+xy+xyz= 1+z+x+xz+y+yz+xy+xyz =1+(x+y+z)+(xy+yz+xz)+xyz= 1 + (x+y+z) + (xy+yz+xz) + xyz

Let S1=x+y+zS_1 = x+y+z and S2=xy+yz+xzS_2 = xy+yz+xz. Also, xyz=Pxyz = P. So, (1+x)(1+y)(1+z)=1+S1+S2+P(1+x)(1+y)(1+z) = 1 + S_1 + S_2 + P.

Now, let's sum the three modified equations: (x(1+y))+(y(1+z))+(z(1+x))=(1P)+(2P)+(4P)(x(1+y)) + (y(1+z)) + (z(1+x)) = (1-P) + (2-P) + (4-P) x+xy+y+yz+z+xz=73Px+xy+y+yz+z+xz = 7-3P Rearranging the terms: (x+y+z)+(xy+yz+xz)=73P(x+y+z) + (xy+yz+xz) = 7-3P S1+S2=73PS_1 + S_2 = 7-3P.

Substitute this into the equation P(1+x)(1+y)(1+z)=(1P)(2P)(4P)P(1+x)(1+y)(1+z) = (1-P)(2-P)(4-P): P(1+(S1+S2)+P)=(1P)(2P)(4P)P(1 + (S_1+S_2) + P) = (1-P)(2-P)(4-P) P(1+(73P)+P)=(1P)(2P)(4P)P(1 + (7-3P) + P) = (1-P)(2-P)(4-P) P(82P)=(1P)(2P)(4P)P(8 - 2P) = (1-P)(2-P)(4-P) 2P(4P)=(1P)(2P)(4P)2P(4-P) = (1-P)(2-P)(4-P)

We can see that (4P)(4-P) is a common factor. Case 1: 4P=0    P=44-P = 0 \implies P=4. If P=4P=4, the equation becomes 2P(0)=(1P)(2P)(0)2P(0) = (1-P)(2-P)(0), which is 0=00=0. So P=4P=4 is a valid solution.

Case 2: 4P04-P \neq 0. We can divide both sides by (4P)(4-P): 2P=(1P)(2P)2P = (1-P)(2-P) 2P=2P2P+P22P = 2 - P - 2P + P^2 2P=P23P+22P = P^2 - 3P + 2 Rearrange into a quadratic equation: P25P+2=0P^2 - 5P + 2 = 0

Solve for PP using the quadratic formula P=b±b24ac2aP = \frac{-b \pm \sqrt{b^2-4ac}}{2a}: P=(5)±(5)24(1)(2)2(1)P = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)} P=5±2582P = \frac{5 \pm \sqrt{25 - 8}}{2} P=5±172P = \frac{5 \pm \sqrt{17}}{2}

So, the three possible values for P=xyzP=xyz are:

  1. P1=4P_1 = 4
  2. P2=5+172P_2 = \frac{5 + \sqrt{17}}{2}
  3. P3=5172P_3 = \frac{5 - \sqrt{17}}{2}

To find the largest possible value, we compare these numbers. We know that 4<17<54 < \sqrt{17} < 5 (since 42=164^2=16 and 52=255^2=25). Approximate value of 174.12\sqrt{17} \approx 4.12. P1=4P_1 = 4 P2=5+1725+4.122=9.122=4.56P_2 = \frac{5 + \sqrt{17}}{2} \approx \frac{5 + 4.12}{2} = \frac{9.12}{2} = 4.56 P3=517254.122=0.882=0.44P_3 = \frac{5 - \sqrt{17}}{2} \approx \frac{5 - 4.12}{2} = \frac{0.88}{2} = 0.44

Comparing these values, the largest value is P2=5+172P_2 = \frac{5 + \sqrt{17}}{2}.

We need to confirm that real numbers x,y,zx, y, z exist for this value of PP. Let A=1+xA=1+x, B=1+yB=1+y, C=1+zC=1+z. We have x(1+y)=1Px(1+y) = 1-P, y(1+z)=2Py(1+z) = 2-P, z(1+x)=4Pz(1+x) = 4-P. This can be written as (A1)B=1P(A-1)B = 1-P, (B1)C=2P(B-1)C = 2-P, (C1)A=4P(C-1)A = 4-P. For P=5+172P = \frac{5+\sqrt{17}}{2}: 1P=15+172=25172=31721-P = 1 - \frac{5+\sqrt{17}}{2} = \frac{2-5-\sqrt{17}}{2} = \frac{-3-\sqrt{17}}{2} 2P=25+172=45172=11722-P = 2 - \frac{5+\sqrt{17}}{2} = \frac{4-5-\sqrt{17}}{2} = \frac{-1-\sqrt{17}}{2} 4P=45+172=85172=31724-P = 4 - \frac{5+\sqrt{17}}{2} = \frac{8-5-\sqrt{17}}{2} = \frac{3-\sqrt{17}}{2}

Notice that 1P<01-P < 0, 2P<02-P < 0, 4P<04-P < 0 (since 174.12\sqrt{17} \approx 4.12). So x(1+y)<0x(1+y) < 0, y(1+z)<0y(1+z) < 0, z(1+x)<0z(1+x) < 0. This implies xx and 1+y1+y have opposite signs, yy and 1+z1+z have opposite signs, zz and 1+x1+x have opposite signs. For example, if x>0x>0, then 1+y<0    y<11+y<0 \implies y<-1. If y<1y<-1, then 1+z>0    z>11+z>0 \implies z>-1. If z>1z>-1, then 1+x<0    x<11+x<0 \implies x<-1. This contradicts x>0x>0. So x,y,zx,y,z must all be negative. If x<0x<0, then 1+y>0    y>11+y>0 \implies y>-1. If y>1y>-1, then 1+z<0    z<11+z<0 \implies z<-1. If z<1z<-1, then 1+x>0    x>11+x>0 \implies x>-1. This contradicts x<0x<0. This means that x,y,zx,y,z cannot be all positive or all negative. The variables x,y,zx,y,z are real numbers. Let's check the signs of x,y,zx,y,z. x(1+y)=3172<0x(1+y) = \frac{-3-\sqrt{17}}{2} < 0 y(1+z)=1172<0y(1+z) = \frac{-1-\sqrt{17}}{2} < 0 z(1+x)=3172<0z(1+x) = \frac{3-\sqrt{17}}{2} < 0

The product of these three is xyz(1+x)(1+y)(1+z)=(1P)(2P)(4P)xyz(1+x)(1+y)(1+z) = (1-P)(2-P)(4-P). P(1+x)(1+y)(1+z)=(3172)(1172)(3172)P \cdot (1+x)(1+y)(1+z) = \left(\frac{-3-\sqrt{17}}{2}\right) \left(\frac{-1-\sqrt{17}}{2}\right) \left(\frac{3-\sqrt{17}}{2}\right) P(1+x)(1+y)(1+z)=18(317)(117)(317)P \cdot (1+x)(1+y)(1+z) = \frac{1}{8} (-3-\sqrt{17})(-1-\sqrt{17})(3-\sqrt{17}) P(1+x)(1+y)(1+z)=18(17+3)(17+1)(173)P \cdot (1+x)(1+y)(1+z) = \frac{1}{8} (\sqrt{17}+3)(\sqrt{17}+1)(\sqrt{17}-3) P(1+x)(1+y)(1+z)=18((17)232)(17+1)P \cdot (1+x)(1+y)(1+z) = \frac{1}{8} ((\sqrt{17})^2 - 3^2)(\sqrt{17}+1) P(1+x)(1+y)(1+z)=18(179)(17+1)P \cdot (1+x)(1+y)(1+z) = \frac{1}{8} (17-9)(\sqrt{17}+1) P(1+x)(1+y)(1+z)=18(8)(17+1)P \cdot (1+x)(1+y)(1+z) = \frac{1}{8} (8)(\sqrt{17}+1) P(1+x)(1+y)(1+z)=17+1P \cdot (1+x)(1+y)(1+z) = \sqrt{17}+1

Since P=5+172>0P = \frac{5+\sqrt{17}}{2} > 0, it implies that (1+x)(1+y)(1+z)(1+x)(1+y)(1+z) must be positive. 5+172(1+x)(1+y)(1+z)=17+1>0\frac{5+\sqrt{17}}{2} (1+x)(1+y)(1+z) = \sqrt{17}+1 > 0. So (1+x)(1+y)(1+z)=2(17+1)5+17=2(17+1)(517)(5+17)(517)=2(51717+517)2517=2(41712)8=4(173)4=173>0(1+x)(1+y)(1+z) = \frac{2(\sqrt{17}+1)}{5+\sqrt{17}} = \frac{2(\sqrt{17}+1)(5-\sqrt{17})}{(5+\sqrt{17})(5-\sqrt{17})} = \frac{2(5\sqrt{17}-17+5-\sqrt{17})}{25-17} = \frac{2(4\sqrt{17}-12)}{8} = \frac{4(\sqrt{17}-3)}{4} = \sqrt{17}-3 > 0 (since 174.12\sqrt{17} \approx 4.12). So (1+x)(1+y)(1+z)(1+x)(1+y)(1+z) is positive.

The existence of real roots x,y,zx, y, z is guaranteed by the fact that the polynomial Q(t)=t3S1t2+S2tP=0Q(t) = t^3 - S_1 t^2 + S_2 t - P = 0 has real roots. We have P=5+172P = \frac{5+\sqrt{17}}{2}. S1+S2=73P=73(5+172)=14153172=13172S_1+S_2 = 7-3P = 7 - 3\left(\frac{5+\sqrt{17}}{2}\right) = \frac{14-15-3\sqrt{17}}{2} = \frac{-1-3\sqrt{17}}{2}. Also, P(1+S1+S2+P)=(1P)(2P)(4P)P(1+S_1+S_2+P) = (1-P)(2-P)(4-P) implies P(1+(73P)+P)=(1P)(2P)(4P)P(1+(7-3P)+P) = (1-P)(2-P)(4-P) which simplified to P25P+2=0P^2-5P+2=0. The values of x,y,zx, y, z are roots of a cubic equation. The problem statement implies that such real numbers x,y,zx,y,z exist.

The largest possible value of xyzxyz is 5+172\frac{5 + \sqrt{17}}{2}. This is in the form a+bcd\frac{a+b\sqrt{c}}{d}. a=5a=5, b=1b=1, c=17c=17, d=2d=2. Check conditions: a,b,c,da, b, c, d are integers: Yes (5,1,17,25, 1, 17, 2). dd is positive: Yes (2>02>0). cc is square-free: Yes (1717 is a prime number, so it's square-free). gcd(a,b,d)=gcd(5,1,2)\text{gcd}(a, b, d) = \text{gcd}(5, 1, 2). gcd(5,1,2)=1\text{gcd}(5, 1, 2) = 1. Yes.

We need to find 1000a+100b+10c+d1000a + 100b + 10c + d. 1000(5)+100(1)+10(17)+21000(5) + 100(1) + 10(17) + 2 =5000+100+170+2= 5000 + 100 + 170 + 2 =5272= 5272

The final answer is 5272\boxed{5272}.

Explanation of the solution:

  1. Rewrite the given equations x+xy+xyz=1x+xy+xyz=1, y+yz+xyz=2y+yz+xyz=2, z+xz+xyz=4z+xz+xyz=4 by letting P=xyzP=xyz. This yields x(1+y)=1Px(1+y)=1-P, y(1+z)=2Py(1+z)=2-P, z(1+x)=4Pz(1+x)=4-P.
  2. Multiply these three new equations: xyz(1+x)(1+y)(1+z)=(1P)(2P)(4P)xyz(1+x)(1+y)(1+z) = (1-P)(2-P)(4-P). Substitute xyz=Pxyz=P.
  3. Expand (1+x)(1+y)(1+z)=1+(x+y+z)+(xy+yz+xz)+xyz(1+x)(1+y)(1+z) = 1+(x+y+z)+(xy+yz+xz)+xyz.
  4. Sum the three new equations: (x+xy)+(y+yz)+(z+xz)=(1P)+(2P)+(4P)(x+xy)+(y+yz)+(z+xz) = (1-P)+(2-P)+(4-P), which simplifies to (x+y+z)+(xy+yz+xz)=73P(x+y+z)+(xy+yz+xz) = 7-3P.
  5. Substitute the sum from step 4 into the expanded product from step 3: P(1+(73P)+P)=(1P)(2P)(4P)P(1+(7-3P)+P) = (1-P)(2-P)(4-P).
  6. Simplify the equation: P(82P)=(1P)(2P)(4P)P(8-2P) = (1-P)(2-P)(4-P), which becomes 2P(4P)=(1P)(2P)(4P)2P(4-P) = (1-P)(2-P)(4-P).
  7. Solve for PP. One solution is P=4P=4. If P4P \ne 4, divide by (4P)(4-P) to get 2P=(1P)(2P)2P = (1-P)(2-P), which simplifies to the quadratic equation P25P+2=0P^2-5P+2=0.
  8. Solve the quadratic equation using the quadratic formula to get P=5±172P = \frac{5 \pm \sqrt{17}}{2}.
  9. Compare the three possible values for PP: 44, 5+172\frac{5+\sqrt{17}}{2}, and 5172\frac{5-\sqrt{17}}{2}. The largest value is 5+172\frac{5+\sqrt{17}}{2}.
  10. Identify a,b,c,da, b, c, d from the expression 5+172\frac{5+\sqrt{17}}{2} as a=5,b=1,c=17,d=2a=5, b=1, c=17, d=2. Verify that these values satisfy the given conditions.
  11. Calculate the final expression 1000a+100b+10c+d=1000(5)+100(1)+10(17)+2=5000+100+170+2=52721000a + 100b + 10c + d = 1000(5) + 100(1) + 10(17) + 2 = 5000 + 100 + 170 + 2 = 5272.