Solveeit Logo

Question

Question: 10 litres of a monoatomic ideal gas at 0<sup>0</sup>C and 10 atm pressure is suddenly released to 1 ...

10 litres of a monoatomic ideal gas at 00C and 10 atm pressure is suddenly released to 1 atm pressure and the gas expands adiabatically against this constant pressure. The final temperature and volume of the gas respectively are.

A

T = 174.9 K, V = 64 L

B

T = 153 K, V = 57 L

C

T = 165.4 K, V = 78.8 L

D

T = 161.2 K, V = 68.3 L

Answer

T = 174.9 K, V = 64 L

Explanation

Solution

This is adiabatic irreversible process so, for this process

PV g = Constant, is not applicable

W = – Pext (V2 – V1)

But for adiabatic process

W = dU = (P2V2P1V1γ1)\left( \frac{P_{2}V_{2} - P_{1}V_{1}}{\gamma - 1} \right)

PV = nRT

\Rightarrow 10 × 10 = n × 0.082 × 273

\Rightarrow n = 4.47 moles – Pext (V2 – V1) =(P2V2P1V1γ1)\left( \frac{P_{2}V_{2} - P_{1}V_{1}}{\gamma - 1} \right)

\Rightarrow – 1 × (V2 – 10) = 1×V210×101.671\frac{1 \times V_{2} - 10 \times 10}{1.67 - 1}

\Rightarrow (10 – V2) = V21000.67\frac{V_{2} - 100}{0.67}

\Rightarrow 6.7 – 0.67 V2 = V2 – 100

\Rightarrow106.7 = 1.67 V2

\Rightarrow V2 = 64

\thereforenR [T2 – T1] = P2V2 – P1V1

\Rightarrow 4.47 ´ 0.082 [T2 – 273] = 64 – 100 = – 36

\Rightarrow (T2 – 273) = – 98.2

\Rightarrow T2 = 174.8 K