Question
Question: $\lim_{x\to 0}\frac{x+2\sin x}{\sqrt{x^2+2\sin x+1}-\sqrt{\sin^2x-x+1}}$ is:...
limx→0x2+2sinx+1−sin2x−x+1x+2sinx is:

3
2
1
6
2
Solution
To evaluate the limit limx→0x2+2sinx+1−sin2x−x+1x+2sinx, we first substitute x=0 into the expression.
Numerator: 0+2sin(0)=0.
Denominator: 02+2sin(0)+1−sin2(0)−0+1=1−1=1−1=0.
Since the limit is of the 00 indeterminate form, we can use rationalization or L'Hopital's rule. Rationalization is often effective when square root terms are involved.
Step 1: Rationalize the denominator.
Multiply the numerator and denominator by the conjugate of the denominator, which is x2+2sinx+1+sin2x−x+1.
The expression becomes:
limx→0(x2+2sinx+1−sin2x−x+1)(x2+2sinx+1+sin2x−x+1)(x+2sinx)(x2+2sinx+1+sin2x−x+1)
Step 2: Simplify the denominator.
Using the difference of squares formula (a−b)(a+b)=a2−b2:
Denominator =(x2+2sinx+1)−(sin2x−x+1) =x2+2sinx+1−sin2x+x−1 =x2−sin2x+2sinx+x
The limit expression is now:
limx→0x2−sin2x+2sinx+x(x+2sinx)(x2+2sinx+1+sin2x−x+1)
Step 3: Separate the limit into two parts.
(limx→0x2−sin2x+2sinx+xx+2sinx)×(limx→0(x2+2sinx+1+sin2x−x+1))
Step 4: Evaluate the second part of the limit.
As x→0:
limx→0(x2+2sinx+1+sin2x−x+1)=02+2sin(0)+1+sin2(0)−0+1 =0+0+1+0−0+1=1+1=1+1=2
Step 5: Evaluate the first part of the limit.
Let L1=limx→0x2−sin2x+2sinx+xx+2sinx.
This is still a 00 form. Divide both the numerator and the denominator by x.
Numerator: x+2sinx=x(1+2xsinx)
Denominator: x2−sin2x+2sinx+x=x(x−xsin2x+2xsinx+1)
Note that xsin2x=xsinx⋅sinx.
So, L1=limx→0x(x−xsinxsinx+2xsinx+1)x(1+2xsinx)
Cancel out x (since x=0 as x→0):
L1=limx→0x−xsinxsinx+2xsinx+11+2xsinx
Now, apply the standard limit limx→0xsinx=1 and limx→0sinx=0.
Numerator: 1+2(1)=3.
Denominator: 0−(1)(0)+2(1)+1=0−0+2+1=3.
So, L1=33=1.
Step 6: Combine the results from Step 4 and Step 5.
The original limit is the product of the two parts:
Limit =L1×2=1×2=2.