Solveeit Logo

Question

Question: $\lim_{x \to 2024} \frac{\tan x - \tan 2024}{\sec x - \sec 2024}$...

limx2024tanxtan2024secxsec2024\lim_{x \to 2024} \frac{\tan x - \tan 2024}{\sec x - \sec 2024}

Answer

csc2024\csc 2024

Explanation

Solution

The limit is of the form 00\frac{0}{0}. Using the definition of the derivative, the limit is the ratio of the derivatives of the numerator and denominator functions evaluated at the limit point. The derivative of tanx\tan x is sec2x\sec^2 x and the derivative of secx\sec x is secxtanx\sec x \tan x. Evaluating these at x=2024x = 2024, we get sec22024\sec^2 2024 and sec2024tan2024\sec 2024 \tan 2024. The ratio is sec22024sec2024tan2024=sec2024tan2024=1/cos2024sin2024/cos2024=1sin2024=csc2024\frac{\sec^2 2024}{\sec 2024 \tan 2024} = \frac{\sec 2024}{\tan 2024} = \frac{1/\cos 2024}{\sin 2024/\cos 2024} = \frac{1}{\sin 2024} = \csc 2024.