Solveeit Logo

Question

Question: $\lim_{x \to 1} \frac{\left(\sum_{k=1}^{100} x^{k}\right)-100}{x-1}$ is equal to...

limx1(k=1100xk)100x1\lim_{x \to 1} \frac{\left(\sum_{k=1}^{100} x^{k}\right)-100}{x-1} is equal to

A

0

B

5050

C

4550

D

-5050

Answer

5050

Explanation

Solution

The given limit is limx1(k=1100xk)100x1\lim_{x \to 1} \frac{\left(\sum_{k=1}^{100} x^{k}\right)-100}{x-1}.

Let f(x)=k=1100xk=x+x2+x3++x100f(x) = \sum_{k=1}^{100} x^{k} = x + x^2 + x^3 + \dots + x^{100}.

We evaluate the numerator and denominator at x=1x=1:

Numerator at x=1x=1: (k=11001k)100=(k=11001)100=100100=0\left(\sum_{k=1}^{100} 1^{k}\right)-100 = \left(\sum_{k=1}^{100} 1\right)-100 = 100 - 100 = 0.

Denominator at x=1x=1: 11=01-1 = 0.

Since the limit is of the indeterminate form 00\frac{0}{0}, we can use L'Hôpital's Rule or the definition of the derivative.

Method 1: Using the definition of the derivative.

Let f(x)=k=1100xkf(x) = \sum_{k=1}^{100} x^{k}. Then f(1)=k=11001k=100f(1) = \sum_{k=1}^{100} 1^{k} = 100.

The limit can be written as limx1f(x)f(1)x1\lim_{x \to 1} \frac{f(x) - f(1)}{x-1}. This is the definition of the derivative of f(x)f(x) at x=1x=1, i.e., f(1)f'(1).

First, we find the derivative of f(x)f(x):

f(x)=ddx(k=1100xk)=ddx(x+x2++x100)f'(x) = \frac{d}{dx} \left(\sum_{k=1}^{100} x^{k}\right) = \frac{d}{dx}(x + x^2 + \dots + x^{100}).

Using the power rule ddx(xk)=kxk1\frac{d}{dx}(x^k) = kx^{k-1}, we differentiate each term:

f(x)=1x11+2x21+3x31++100x1001f'(x) = 1 \cdot x^{1-1} + 2 \cdot x^{2-1} + 3 \cdot x^{3-1} + \dots + 100 \cdot x^{100-1}

f(x)=1+2x+3x2++100x99f'(x) = 1 + 2x + 3x^2 + \dots + 100x^{99}.

Now, we evaluate f(1)f'(1):

f(1)=1+2(1)+3(1)2++100(1)99f'(1) = 1 + 2(1) + 3(1)^2 + \dots + 100(1)^{99}

f(1)=1+2+3++100f'(1) = 1 + 2 + 3 + \dots + 100.

This is the sum of the first 100 positive integers. The sum of the first nn positive integers is given by the formula n(n+1)2\frac{n(n+1)}{2}.

For n=100n=100, the sum is 100(100+1)2=100×1012=50×101=5050\frac{100(100+1)}{2} = \frac{100 \times 101}{2} = 50 \times 101 = 5050.

Therefore, the limit is 5050.

Method 2: Using L'Hôpital's Rule.

Let N(x)=(k=1100xk)100N(x) = \left(\sum_{k=1}^{100} x^{k}\right)-100 and D(x)=x1D(x) = x-1.

Since limx1N(x)=0\lim_{x \to 1} N(x) = 0 and limx1D(x)=0\lim_{x \to 1} D(x) = 0, we can apply L'Hôpital's Rule:

limx1N(x)D(x)=limx1N(x)D(x)\lim_{x \to 1} \frac{N(x)}{D(x)} = \lim_{x \to 1} \frac{N'(x)}{D'(x)}.

N(x)=ddx(k=1100xk100)=ddx(k=1100xk)ddx(100)N'(x) = \frac{d}{dx} \left(\sum_{k=1}^{100} x^{k}-100\right) = \frac{d}{dx}\left(\sum_{k=1}^{100} x^{k}\right) - \frac{d}{dx}(100)

N(x)=k=1100ddx(xk)0=k=1100kxk1=1+2x+3x2++100x99N'(x) = \sum_{k=1}^{100} \frac{d}{dx}(x^{k}) - 0 = \sum_{k=1}^{100} kx^{k-1} = 1 + 2x + 3x^2 + \dots + 100x^{99}.

D(x)=ddx(x1)=1D'(x) = \frac{d}{dx}(x-1) = 1.

So, the limit is limx11+2x+3x2++100x991\lim_{x \to 1} \frac{1 + 2x + 3x^2 + \dots + 100x^{99}}{1}.

Substituting x=1x=1:

1+2(1)+3(1)2++100(1)99=1+2+3++1001 + 2(1) + 3(1)^2 + \dots + 100(1)^{99} = 1 + 2 + 3 + \dots + 100.

This is the sum of the first 100 positive integers, which is 100(100+1)2=5050\frac{100(100+1)}{2} = 5050.

Both methods give the same result.